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Abstract. The color of a surface structured at the mesoscopic scale differs from 
the one of a flat surface of the same material because of the light interreflec-
tions taking place in the concavities of the surface, as well as the shadowing ef-
fect. The color variation depends not only on the surface topology but also on 
the spectral reflectance of the material, its matte or glossy finishing, and the an-
gular distribution of the incident light. For an accurate prediction of the radi-
ance perceived from each point of the object by an observer or a camera, we 
must take into account comprehensively the multiple paths of light which can 
be reflected, scattered or absorbed by the material and its surface. In this paper, 
we focus on the light reflection component due to the material-air interface, in 
the special case of a surface structured with parallel, periodical, specular V-
shaped ridges, illuminated either by collimated light from any direction of the 
hemisphere, or by diffuse light. Thanks to an analytical model, we compute the 
radiance reflected in every direction of the hemisphere by accounting for the 
different interreflections, according to the angular reflectance of the panels and 
the aperture angle of the cavity. We can then deduce the apparent reflectance of 
the cavity when viewed from a large distance. 
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1 Introduction 

It is well known that the structure of surfaces and materials has a crucial influence 
on the way they reflect light, thereby on their appearance. A same material structured 
in different ways can yield very different appearance attributes, from bright to dark, 
glossy to matte or transparent to opaque.  

The influence of the material structure on appearance is mainly related to concept 
of light scattering, a concept which covers a wide variety of optical principles accord-
ing to the size of the material structures and their periodicity. Regular or periodical 
structures whose characteristic size is comparable to the wavelength of light generate 
interferences or diffraction, and consequently colorations which are often called struc-
tural colors [1]. These effects have been widely explored in optics for more than one 
century, even though pseudo-periodical structures are still an active subject of inves-
tigation [see for example Ref. 2]. In opposition, irregular structures can generate both 



coherent and incoherent light scattering which mainly results in a reorientation of 
light in space and depolarization. For these randomly microstructured materials, many 
models have also been proposed in the last century to predict their reflection and 
transmission properties according to the wavelength, polarization, orientation and 
position of light. Among the most famous theories for the light scattering by volumes, 
we can mention the Kubelka-Munk model initially introduced for paints [3], the Mel-
amed model for pigments powders and slurries [4], the radiative transfer theory by 
Chandrasekhar [5], the multi-flux theory, the Van de Hulst works for scattering by 
particles [6], etc. We can also evocate famous models for the scattering of light by 
surfaces with a random roughness, from Beckman and Spizzichino [7] who modelled 
diffraction by such surfaces, through Torrance and Sparrow [8] who modelled inco-
herent reflection by randomly organized microfacets, to the most advanced models 
which also take into account the multiple scattering between different facets [9-11]. 
All these models form a large prediction toolbox for many visual attributes (color, 
translucency and opacity, gloss and matt aspect), applicable to a wide range of mate-
rials according to their optical properties (refractive indices, scattering and absorption 
coefficients…) and structural properties (surface roughness, particle size and concen-
tration, layer thickness…), provided the material can be considered as homogeneous 
at the macro- or mesoscopic scale.  

However, for many kinds of surfaces or objects, the multiscale structure of the 
matter do have to be taken into account in order to obtain accurate optical models and 
appearance predictions. Describing scattering at multiple scales is generally done by 
combining different models. The classical literature in physics shows various exam-
ples. Mie scattering model is used to describe the light scattering by one particle, and 
a radiative transfer model is then used to describe the light transport through a piece 
of medium with particles. For stacks of diffusing layers, the Kubelka-Munk model 
describes the light scattering at the microscopic scale within each layer and predicts 
its reflectance and transmittance, then the Kubelka layering model [12] or more ad-
vanced models describe the flux transfers at the mesoscopic scale between the differ-
ent layers with their respective interfaces [13-14]. For halftone prints, the optical 
properties of the paper and the inks can be both modeled by the Kubelka-Munk theory 
[15], then the scattering properties of the set of ink dots on top of the paper can be 
predicted by a number of models describing the flux transfers between the different 
inked and non-inked areas [16-19]. But models are still missing for a volume made of 
an alternation of mesoscopic bricks of materials and the 3D flux transfers taking place 
between them, as we can find in 3D inkjet printing, and for a surface whose shape has 
been given a mesoscopic, possibly periodical structure.  

In the latter case on which the present paper is focused, the multiple reflections be-
tween the different areas of the non-flat surface, also called interreflections, give to 
the object specific reflection properties according to the illumination conditions that 
the models mentioned above cannot render properly. As shown in  recent studies ded-
icated to ridged Lambertian materials (ridges with V-profile) [20-21], the presence of 
periodical ridges modifies the color of the material in comparison to the color of the 
flat surface, in different ways according to the ridge aperture and the illumination 
conditions: the color of the ridge surface is brighter and more saturated than the one 



of the flat surface under frontal collimated illumination, but it is darker and less satu-
rated under diffuse illumination. Interreflection models taking explicitly into consid-
eration the microscopic optical properties of the material and the mesoscopic structure 
of the surface are capable to predict these color variations, thus also allowing the pre-
diction of the irradiance repartition at these two scales. The present paper follows this 
investigation on materials with periodical V-shaped ridges under different illumina-
tion conditions, by considering this time a nonscattering material and describing the 
multiple specular reflections undergone by each ray between faces of the structure, 
behaving like mirrors. As for the model dedicated to Lambertian materials, we adopt a 
radiometric approach, yielding analytical expressions for the angular and bi-
hemispherical reflectance of the structured surface, as a function of the material re-
fractive index and the ridge aperture α (see Figure 1).  

 

 

Figure 1 – Structured surface with parallel and periodical V-shaped ridges of aperture angle α.  

 
The paper is structured as follows: we first present the useful concepts for describ-

ing our model, to then introduce the formalization of multiple light reflections hap-
pening in a V-cavity, with specular surfaces as pannels. After this we move on to the 
fourth section where we present the results obtained by using the presented model, 
and we end with our conclusions. 

2 Reflectance  

The fraction of light reflected by the structured surface is characterized by the re-
flectance concept, which is defined for an area of the surface much larger than the 
width of the cavities. This concept relies on radiometric quantities related to the 
amount of incident and reflected light, recalled below, which can also be used to de-
scribe the multiple reflection process within each cavity.  

The light power, or flux, denoted as F, can be regarded as a collection of light rays 
propagating from the source to the objects, then from areas of the objects to other 
areas, then from the objects to the observer. The distribution of the light flux over a 
given surface is described by the concept of irradiance (for incoming light) or exi-
tance (for outgoing light), defined as the density of received or emitted flux dF per 
elementary area dA: 



 
dF

E
dA
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Radiance, denoted as L, is defined by the density of light power (or flux) d²F per 
elementary geometrical extent 2d G : 
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where the geometrical extent defines the flux transfer volume between the two ele-
mentary areas. 

Reflectance denotes any ratio of reflected flux to incident flux relative to the same 
surface element, defined for a given illumination and observation geometry. In this 
paper, reflectance is generically denoted as R. In the special case of air-medium inter-
faces, the angular reflectance is denoted as R01(θ) for collimated light coming from 
medium 0 (in our case, it is air, of refractive index n0 = 1) at the interface with medi-
um 1 (of refractive index n1, which can be either real or complex), with an angle of 
incidence θ. The term n denotes the relative optical index of the interface, i.e., the 
ratio of the refractive indices as follows: 
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When a light ray with radiance Li is reflected on a flat interface, the reflected radi-
ance Lr is simply given by: 

  01r iL R L    (4) 

where θ is the angle between the incident radiance and the normal of the interface.  

3 Multiple reflections of a light ray in a specular cavity 

We can notice from Figure 1 that a light ray entering into one cavity is reflected, 
possibly multiple times, in this cavity only. Therefore, we can focus on the reflection 
of light by one cavity, and consider that all cavities reflect light in the same way. In 
this section, we propose to present the analytical model permitting to accurately pre-
dict the amount and directions of light reflected by the cavity. The model is based on 
geometrical optics, with an approach comparable to ray tracing. It describes the path 
of the light after the different reflections across the structure, and takes into account 
the precise number of bounces that the light undergoes on the panels.  

3.1 Geometry of the cavity 

Each cavity is formed by two specular panels of infinite length along the x axis of 
the 3D Cartesian space (Figure 2). The width of both panels is set to unity (it could be 



equivalently any other value: the width has no impact on the interreflection phenome-
non as shown in [18] and on the computation of the specular radiance that we want to 
perform here). The angle between the two panels, also called "aperture of the cavity", 
is denoted as α. Hence, each panel forms a dihedral angle α/2 with the (xOz)-plane, 
where the z axis corresponds to the normal of the average structured surface.  

 

 

Figure 2 – 3D geometry of one cavity, and vector e representing the direction of illumination. 

The normal of panels 1 and 2 are respectively:  

  
 

 
 

2

0 0

cos / 2 and cos / 2

sin / 2 sin / 2

   
          
       

1N N  (5) 

The incident light ray is characterized by unit radiance, and a unit vector e with 
spherical coordinates (θ, φ) represented in Figure 2. In this Cartesian coordinate sys-
tem, the vector e is given by: 
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3.2 Multiple reflections in a cavity 

Once a light ray enters into a cavity, it may undergo one or several successive re-
flections on the panels. After each reflection, the direction of the ray is modified ac-
cording to Snell’s laws. However, in geometrical optics, it is classical to represent the 
image of the ray reflected by a mirror which is aligned with the incident ray, as shown 
on the left of Figure 3 through the example of two rays. By using this representation 
for the cavity, we can draw a straight line aligned with the incident ray, crossing the 
successive images of the panels: after a reflection on panel 1, the ray reaches the im-



age of panel 2 (which forms an angle α with panel 1), then the image of panel 1 
(which also forms an angle α with the image of panel 2, and so on).  

The number of reflections depends on both orientation and position of the ray. This 
is visible in Figure 3 where the two rays are parallel (thus characterized by the same 
vector e) and strike panel 2 in different positions: one ray (represented in red) under-
goes 4 reflections, whereas the other ray undergoes 3 reflections. The ray light paths 
in broken straight lines are featured on the right of the figure, in a projection onto the 
(y0z) plane of the 3D scene represented on the left of the figure. In this plane, the 
projection of vector e, denoted as e , is:,  
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with 

  arctan tan cos      (7) 

 

Figure 3 – Left: 3D representation of two parallel light rays oriented according to a same vector 
e striking the cavity in different positions on panel 2. Right: 2D representation of the two same 
light rays projected onto the (yOz) vertical plane. The light path can be represented by a straight 

line meeting the successive images of the panels from each other. The projection of real light 
paths in broken straight lines is also represented on the figure (left).  

3.3 Number of reflections 

The number of reflections according to the orientation and position of the ray is 
computed according to the following geometrical considerations, in the (yOz) plane.   



The orientation of the ray is denoted by the angle   given by Eq. (7). Its position 
is described by the point P where the ray meets the line (AB) which joins the extremi-
ties of the panels in the (yOz) plane, drawn in Figure 4. This point P has the coordi-
nates   ,cos / 2PP y  . The ray meets the unit circle centered in point  0,0O   
in two points: first in point  sin ,cosG GG    , then in point  sin ,cosH HH    .  

Figure 4 shows two examples for the same position Py  but two different orienta-
tions of the ray. On the left of the figure, the ray strikes first panel 1, on the right of 
the figure, it strikes first panel 2. The panel first met is determined by the following 
condition: if the meeting point  ,0qQ y  of the ray and the y-axis has a negative 
abscissa qy , panel 1 is met first, otherwise, panel 2 is met first. With some geomet-
rical calculation, we find that abscissa qy  is given by 
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where the angles G  and H  are computed as follows.  

  

Figure 4 – Geometry for the calculation of the number of reflections, for a same position yP of 
the ray, and two different orientations.  
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After some calculation, Eq. (9) can be written 

    2
sin cos cos sinG Py           (10) 



and by noticing that / 2G      , we obtain 
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Likewise PH


 and e  are collinear, and by following similar reasoning as above 
with point H in place of point G, therefore with angle H  in place of G , we obtain 

    2
sin cos cos sinH Py           (11) 

This time, we can notice that / 2H      , therefore we have: 
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Figure 4 illustrates the fact that H  is a reflex angle, i.e., higher than π, when the 
ray strikes first panel 1 ( 0qy  ), and a salient angle, i.e., lower than π, when it strikes 
first panel 2 ( 0qy  ). We may prefer using the angle H , obtuse in any case, defined 
as:  
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Finally, the number of reflections occurring after the first reflection of the first 
panel met is the number of times angle / 2H    contains α. Hence, the total number 
of reflections is given by 
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where symbol floor[.] gives the integral part of the number in argument.  
 

3.4 Radiance attenuation for one ray 
Now that the number of light reflections has been determined, we can express the 

global attenuation undergone by the radiance, by multiplying the successive Fresnel 
reflectances  12 iR   corresponding to the different reflections. For each reflection, 
we need to compute the local incidence angle i . This local incidence angle can be 
easily obtained through the dot product between vector e, which describes the direc-
tion of the ray, and the normal of the panel, or image of panel, on which the consid-
ered reflection occurs.  

The panels have the normal vectors N1 and N2 given by Eq. (5). The local incident 
angle for the first reflection depends on whether the ray first meets panel 1 or panel 2, 
therefore on the sign of the parameter qy  defined by Eq. (8):  
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where the symbol "  " denotes the dot product  
The following reflections, if any, occur on images of panels whose normal vector 

denoted as  
1

jN  or  
2

jN  if the first reflection occurs on panel 1, respectively on panel 
2. These normal vectors, for 2j   to the number of reflections m given by Eq. (13), 
are defined as  
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and the local incident angle is given by 
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Finally, the global attenuation of the radiance according to its position Py  between 
 sin / 2   and  sin / 2  and its orientation  ,  , is given by the reflectance: 
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where  1
i  denotes the local angle i  for the first reflection given by Eq. (14). 

Notice that according to the Helmholtz reciprocity principle, a ray following the 
same path within the cavity but in opposite direction would undergo exactly the same 
attenuation. Hence,  , , PR y   can denote the attenuation for the ray coming or exit-
ing the cavity at the angle  ,   through the position Py . 

4 Reflectance of the structured surface 

From the reflectance attached to each incident ray within the cavity, we can derive 
the reflectance of the structured surface for a Lambertian illumination. It can be a 
hemispherical-directional reflectance, also called angular reflectance, being a function 
of the observation direction. Another interesting type is the bi-hemispherical reflec-
tance. It is also possible to compute directional-hemispherical reflectance, equivalent 
to the hemispherical directional reflectance in this case, thanks to the reversibility of 
light principle. 

4.1 Angular reflectance 

Let us consider that the cavity is illuminated over a band of width Δx along the x 
axis, perpendicular to the cavity, i.e. illuminated  along the y axis, by collimated light 
from a direction  ,  . The illumination is uniform, i.e., same radiance iL  arrives in 
each point of the band, which receives a uniform irradiance  



 cosi i i iE L     (18) 

where i  denotes the small solid angle of illumination. Since the illuminated area is 
 2sin / 2 x  , the incident flux on the band is  2sin / 2i iF xE   . On each ele-

mentary area within the band, centered around the position and of size Pxdy , the 
elementary flux is i P idF xdy E  . 

The different elementary fluxes are reflected in various directions according to the 
panel that each one meets first and the number of reflections. By collecting the whole 
reflected flux, in practice with a measurement device equipped with an integrating 
sphere, the captured flux FR is given by  
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The directional-hemispherical reflectance of the band, and by extension to the 
whole structured surface, associated with this orientation of the incident light, is 
therefore: 
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Again, according to the Helmholtz reciprocity principle, the angular function 
 ,R    given by Eq. (20) also corresponds to the hemispherical-directional reflec-

tance function of the structured surface when it is illuminated by Lambertian light 
over the hemisphere (same radiance Li comes from every direction) and observed in 
the direction  ,  .  

Notice that since the specular reflections on the panels do not modify the geomet-
rical extent of the rays, the radiance rL  perceived in one direction  ,r r   is: 

     , ,r r r r r iL R L      (21) 

It is possible to display the reflectance given by Eq. (20) according to the observa-
tion direction on a 2D map thanks to the Lambert azimuthal equal area projection. To 
every direction  ,   corresponds a point  ,u v  within a disk of radius 2  whose 
coordinates are given by:  
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The advantage of this transformation is that it conserves the areas by mapping a 
portion of the hemisphere of a given area, into a portion of the disk with same area.  

In Figure 5, we present the results given by Eq. (20) for two different materials, for 
aperture angle values of 45, 60, 90, 120, 150° and 180°. One material is dielectric, 
with a refraction index of 1.5. Its spectral reflectances are converted first in CIE 1931 
XYZ tristimulus values then into L*a*b* color values, for a better visualization. The 
other one is made of copper, with tabulated values for the refractive index in the visi-



ble spectrum of light (400 – 700 nm), the spectral reflectances being converted in CIE 
1931 XYZ tristimulus values, and then into sRGB color values. 

 
 

Figure 5 – Maps of hemispherical-directional reflectance (in %) for cavities of dielectric mate-
rial, and color maps for cavities of copper, obtained with different aperture angles of cavities, 

represented with the Lambert azimuthal equal area projection. 

Dielectric material (n = 1.5) 
  = 45°  =60°  =90° 

   
 =120°  =150°  =180° 

   
Copper under a LED lighting (visible spectrum from 400 to 700 nm) 

 = 45°  = 60°  = 90° 

   
 = 120°  = 150°  = 180° 

   



For the dielectric material, we can see that the reflectance is globally very weak, 
except at high incidence angles (periphery of the graphs) when the cavity aperture 
angle is large. This is coherent with the angular variations of the Fresnel formulae. 
The highest angular reflectances peaks are located near the zones where the azimuthal 
angle 2   , i.e. when the incident plane contains the x-axis. We can also see that 
the radiance gradients have some discontinuities, which correspond to the directions 
at which the number of reflections within the cavity is incremented by one. For exam-
ple, on the map attached to an aperture of 120°, a central area is lighter than the rest of 
the graph: it corresponds to rays undergoing one reflection, whereas in the rest of the 
graphs, rays undergo two reflections.  

It is even more visible in the case of the copper. This material being more reflec-
tive, the reflected light appears more sliced into specific areas. It is also important to 
notice the saturation of the color increasing when the aperture angle decreases, as also 
shown in the case of diffusing surfaces in [20]. 

4.2 Bi-hemispherical reflectance  

Now, we want to investigate the bi-hemispherical reflectance of the V-cavity and 
the influence of the surface structure (aperture angle α).  

The bi-hemispherical reflectance corresponds to a uniform illumination over the 
hemisphere (Lambertian illumination, characterized by a constant radiance Li from 
every direction), and a capture of the whole reflected light over the hemisphere. It is 
obtained by integrating over the hemisphere the angular reflectance studied previous-
ly, as follows.  

The irradiance on the structured surface is related to the radiance Li by: 
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and the incident flux on a band of the  2sin / 2 x   area cavity is: 

  2sin / 2i iF xE    (23) 

The exitance is the sum of the reflected radiances expressed by Eq. (21): 
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where  ,r r r iL R L    is the radiance reflected by the cavity according to the reflec-
tance defined by Eq. (20).  

Finally, the bi-hemispherical reflectance is given by: 
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which yields, according to Eqs. (20) and (21), 
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Using Eq.  (26), we computed the bi-hemispherical reflectances for various aper-
ture angles of the specular V-cavity, for the dielectric material previously studied, and 
for a cavity of silver at 550 nm (n = 0.1249 + i3.3391). The values are presented in 
Table 1.  
 

Table 1 – Bi-hemispherical reflectances for various cavity aperture angles. 

Aperture angle 45° 60° 90° 120° 150° 180° 
Silver 0.87 0.91 0.94 0.95 0.96 0.97 

Dielectric (n = 1.5) 0.01 0.02 0.04 0.05 0.08 0.09 
 
The bi-hemispherical values in Table 1 confirm the tendencies drawn by the angu-

lar reflectance maps. As the aperture angle gets smaller, the reflectance is lower and 
the structured surface has a darker appearance, which is due to the increase of the 
number of light reflections in the cavities, each reflection introducing a radiance at-
tenuation. It is illustrated by Table 2, where we computed, in the case of a cavity of 
silver at 550 nm (n = 0.1249 + i3.3391) with an aperture of 45°, the bi-hemispherical 
reflectance by taking into account only 1 light reflections, then adding the paths of the 
light where a second reflection happens, then a third one, up to the maximum number 
of 4 light reflections possible in this structure.    

 

Table 2 – Bi-hemispherical reflectance of a 45° V-cavity made of silver at 550 nm 

Maximal number of light reflections  Bi-hemispherical reflectance  

1 0.14 

2 0.40 

3 0.70 

4 0.97 

 



 

 

 

Figure 6 - Maps of angular reflectance for a 45° V-cavity made of silver, at 550 nm (n = 0.1249 
+ i3.3391), represented with the Lambert azimuthal equal area projection, where only one re-

flection (left) and all the possible reflections (right) of rays in the cavity are rendered. 

We observe from these results that if we take into account only one or two light re-
flections, as it is often done in light scattering models by rough metallic surfaces, we 
underestimate the reflectance. The error is sensible in the case of media with high 
refractive index, like metals. It is also visible through Figure 6, where the angular 
reflectance for silver at 550 nm with an aperture of 45° is represented in the cases 
where we only consider one reflection of the light, or all the possible reflections. In 
order to obtain a more precise prediction of the appearance, especially in the case of a 
small aperture angle in the concavities of the surface topography, it is necessary to 
compute it with a sufficient number of light reflections, as also shown recently in the 
domain of computer graphics [10-11].  

5 Conclusions 

In this paper, we analyzed the interreflections happening in a structured surface 
made of parallel, specular V-cavities under a Lambertian illumination. We proposed a 
model taking into account the exact number of light reflections occurring in the struc-
tures, in order to accurately predict the reflectance according to the observation angle. 
We saw that the material and the angle of the cavity have a strong impact on the inter-
reflections and the reflectance of the concave surfaces, in particular because of the 
number of light reflections. We also showed that it is crucial to model correctly the 
number of light reflections happening in surfaces presenting concavities with small 
aperture angle, as it has a great influence on the final visual appearance. This consti-
tutes an extension for the modelization of the light being reflected by complex surfac-
es, to better predict the visual appearance of given surfaces. It could be combined in 
the future with a model predicting the interreflections in similar cavities made of a 
Lambertian material, in order to predict the appearance of a diffusing material pre-
senting a structured interface with air.  
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