Skip to main content

Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextual Learning

  • Chapter
  • First Online:
Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Automatic pancreas segmentation in radiology images, e.g., computed tomography (CT), and magnetic resonance imaging (MRI) , is frequently required by computer-aided screening, diagnosis, and quantitative assessment. Yet, pancreas is a challenging abdominal organ to segment due to the high inter-patient anatomical variability in both shape and volume metrics. Recently, convolutional neural networks (CNN) have demonstrated promising performance on accurate segmentation of pancreas. However, the CNN-based method often suffers from segmentation discontinuity for reasons such as noisy image quality and blurry pancreatic boundary. In this chapter, we first discuss the CNN configurations and training objectives that lead to the state-of-the-art performance on pancreas segmentation. We then present a recurrent neural network (RNN)  to address the problem of segmentation spatial inconsistency across adjacent image slices. The RNN takes outputs of the CNN and refines the segmentation by improving the shape smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function. In: MICCAI, pp 674–682. Springer

    Google Scholar 

  2. Cai J, Lu L, Zhang Z, Xing F, Yang L, Yin Q (2016) Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: MICCAI, pp 442–450. Springer

    Google Scholar 

  3. Chen J, Yang L, Zhang Y, Alber MS, Chen DZ (2016) Combining fully convolutional and recurrent neural networks for 3d biomedical image segmentation. In: NIPS, pp 3036–3044

    Google Scholar 

  4. Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI 40(4):834–848

    Article  Google Scholar 

  5. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3d u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI, pp 424–432. Springer

    Google Scholar 

  6. Clark KW, Vendt BA, Smith KE, Freymann JB, Kirby JS, Koppel P, Moore SM, Phillips SR, Maffitt DR, Pringle M, Tarbox L, Prior FW (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057

    Article  Google Scholar 

  7. Deng J, Dong W, Socher R, Li L, Li K, Li F (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE computer society conference on computer vision and pattern recognition (CVPR 2009), 20–25 June 2009, Miami, Florida, USA, pp 248–255

    Google Scholar 

  8. Farag A, Lu L, Roth HR, Liu J, Turkbey E, Summers RM (2017) A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. TMI 26(1):386–399

    MathSciNet  MATH  Google Scholar 

  9. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp 249–256

    Google Scholar 

  10. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. MIA 36:61–78

    Google Scholar 

  11. Karasawa K, Oda M, Kitasaka T, Misawa K, Fujiwara M, Chu C, Zheng G, Rueckert D, Mori K (2017) Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. MIA 39:18–28

    Google Scholar 

  12. Lee C, Xie S, Gallagher PW, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS

    Google Scholar 

  13. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR, pp 3431–3440

    Google Scholar 

  14. Merkow J, Marsden A, Kriegman DJ, Tu Z (2016) Dense volume-to-volume vascular boundary detection. In: MICCAI, pp 371–379

    Google Scholar 

  15. Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: International conference on 3D vision, pp 565–571

    Google Scholar 

  16. Ng J, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R, Toderici G (2015) Beyond short snippets: deep networks for video classification. In: ICCV, pp 4694–4702

    Google Scholar 

  17. Oda M, Shimizu N, Karasawa K, Nimura Y, Kitasaka T, Misawa K, Rueckert D, Mori K (2016) Regression forest-based atlas localization and direction specific atlas generation for pancreas segmentation. In: MICCAI, pp 556–563. Springer

    Google Scholar 

  18. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp 234–241

    Google Scholar 

  19. Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI, pp 556–564. Springer

    Google Scholar 

  20. Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: MICCAI, pp 450–451. Springer

    Google Scholar 

  21. Roth HR, Lu L, Lay N, Harrison AP, Farag A, Summers RM (2018) Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. MIA 45:94–107

    Google Scholar 

  22. Rotha HR, Odaa H, Zhoub X, Shimizua N, Yanga Y, Hayashia Y, Odaa M, Fujiwarac M, Misawad K, Moria K (2018) An application of cascaded 3D fully convolutional networks for medical image segmentation. ArXiv e-prints

    Google Scholar 

  23. Shi X, Chen Z, Wang H, Yeung D, Wong W, Woo W (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NIPS, pp 802–810

    Google Scholar 

  24. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations, pp 1–14

    Google Scholar 

  25. Stollenga MF, Byeon W, Liwicki M, Schmidhuber J (2015) Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In: NIPS, pp 2998–3006

    Google Scholar 

  26. Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. MIA 23(1):92–104

    Google Scholar 

  27. Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. TMI 32(9):1723–1730

    Google Scholar 

  28. Xie S, Tu Z (2015) Holistically-nested edge detection. In: ICCV, pp 1395–1403

    Google Scholar 

  29. Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PH (2015) Conditional random fields as recurrent neural networks. In: ICCV, pp 1529–1537

    Google Scholar 

  30. Zhou Y, Xie L, Shen W, Fishman E, Yuille AL (2016) Pancreas segmentation in abdominal CT scan: a coarse-to-fine approach. http://arxiv.org/abs/1612.08230

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, J., Lu, L., Xing, F., Yang, L. (2019). Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextual Learning. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-13969-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13969-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13968-1

  • Online ISBN: 978-3-030-13969-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics