Skip to main content

Deep Hashing and Its Application for Histopathology Image Analysis

  • Chapter
  • First Online:
  • 2643 Accesses

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Content-based image retrieval (CBIR)  has attracted considerable attention for histopathology image analysis because it can provide more clinical evidence to support the diagnosis. Hashing is an important tool in CBIR due to the significant gain in both computation and storage. Because of the tremendous success of deep learning, deep hashing simultaneously learning powerful feature representations and binary codes has achieved promising performance on microscopic images. This chapter presents several popular deep hashing techniques and their applications on histopathology images. It starts introducing the automated histopathology image analysis and explaining the reasons why deep hashing is a significant and urgent need for data analysis in histopathology images. Then, it specifically discusses three popular deep hashing techniques and mainly introduces pairwise-based deep hashing. Finally, it presents their applications on histopathology image analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Petushi S, Garcia FU, Haber MM, Katsinis C, Tozeren A (2006) Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. Bio Med Comput Med Imag 6(1):1

    Google Scholar 

  2. Yang L, Chen W, Meer P, Salaru G, Feldman MD, Foran DJ (2007) High throughput analysis of breast cancer specimens on the grid. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 617–625

    Google Scholar 

  3. Xing F, Yang L (2016) Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev Biomed Eng 9:234–263

    Article  Google Scholar 

  4. Xing F, Xie Y, Yang L (2016) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imag 35(2):550–566

    Article  Google Scholar 

  5. Comaniciu D, Meer P, Foran DJ (1999) Image-guided decision support system for pathology. Mach Vis Appl 11(4):213–224

    Article  Google Scholar 

  6. Caicedo JC, Cruz A, Gonzalez FA (2009) Histopathology image classification using bag of features and kernel functions. In: Proceedings of the conference on artificial intelligence in medicine in Europe. Springer, Berlin, pp 126–135

    Chapter  Google Scholar 

  7. Basavanhally AN, Ganesan S, Agner S, Monaco JP, Feldman MD, Tomaszewski JE, Bhanot G, Madabhushi A (2010) Computerized image-based detection and grading of lymphocytic infiltration in her2+ breast cancer histopathology. IEEE Trans Biomed Eng 57(3):642–653

    Article  Google Scholar 

  8. Zheng L, Wetzel AW, Gilbertson J, Becich MJ (2003) Design and analysis of a content-based pathology image retrieval system. IEEE Trans Inf Tech Biomed 7(4):249–255

    Article  Google Scholar 

  9. Akakin HC, Gurcan MN (2012) Content-based microscopic image retrieval system for multi-image queries. IEEE Trans Inf Tech Biomed 16(4):758–769

    Article  Google Scholar 

  10. Zhang X, Liu W, Dundar M, Badve S, Zhang S (2015) Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans Med Imag 34(2):496–506

    Article  Google Scholar 

  11. Zhang X, Su H, Yang L, Zhang S (2015) Fine-grained histopathological image analysis via robust segmentation and large-scale retrieval. In: Proceedings of the international conference on computer vision and pattern recognition, pp 5361–5368

    Google Scholar 

  12. Jiang M, Zhang S, Huang J, Yang L, Metaxas DN (2015) Joint kernel-based supervised hashing for scalable histopathological image analysis. In: Medical image computing and computer-assisted intervention, pp 366–373

    Google Scholar 

  13. Shi X, Xing F, Xu K, Xie Y, Su H, Yang L (2017) Supervised graph hashing for histopathology image retrieval and classification. Med Image Anal

    Google Scholar 

  14. Shi X, Xing F, Xie Y, Su H, Yang L (2017) Cell encoding for histopathology image classification. In: Medical image computing and computer-assisted intervention

    Google Scholar 

  15. Zhang S, Metaxas D (2016) Large-scale medical image analytics: recent methodologies, applications and future directions. Med Imag Anal 33:98–101

    Article  Google Scholar 

  16. Wang J, Kumar S, Chang S (2012) Semi-supervised hashing for large-scale search. IEEE Trans Pattern Anal Mach Intell 34(12):2393–2406

    Article  Google Scholar 

  17. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Proceedings of the advances in neural information processing systems, pp 1753–1760

    Google Scholar 

  18. Shi X, Xing F, Cai J, Zhang Z, Xie Y, Yang L (2016) Kernel-based supervised discrete hashing for image retrieval. In: Proceedings of the European conference on computer vision, pp 419–433

    Chapter  Google Scholar 

  19. Liu W, Wang J, Ji R, Jiang Y, Chang S (2012) Supervised hashing with kernels. In: Proceedings of the international conference on computer vision and pattern recognition, pp 2074–2081

    Google Scholar 

  20. Shen F, Shen C, Liu W, Tao Shen H (2015) Supervised discrete hashing. In: Proceedings of the international conference on computer vision and pattern recognition, pp 37–45

    Google Scholar 

  21. Shi X, Xing F, Xu K, Sapkota M, Yang L (2017) Asymmetric discrete graph hashing. In: Association for the advancement artificial intelligence

    Google Scholar 

  22. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  23. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  24. Lin K, Yang HF, Hsiao JH, Chen CS (2015) Deep learning of binary hash codes for fast image retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 27–35

    Google Scholar 

  25. Lai H, Pan Y, Liu Y, Yan S (2015) Simultaneous feature learning and hash coding with deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3270–3278

    Google Scholar 

  26. Sapkota M, Shi X, Xing F, Yang L (2018) Deep convolutional hashing for low dimensional binary embedding of histopathological images. IEEE J Biomed Health Inform

    Google Scholar 

  27. Shi X, Sapkota M, Xing F, Liu F, Cui L, Yang L (2018) Pairwise based deep ranking hashing for histopathology image classification and retrieval. Pattern Recog 81:14–22

    Article  Google Scholar 

  28. Norouzi M, Fleet DJ, Salakhutdinov RR (2012) Hamming distance metric learning. In: Proceedings neural information processing systems, pp 1061–1069

    Google Scholar 

  29. Wang J, Liu W, Sun AX, Jiang YG (2013) Learning hash codes with listwise supervision. In: International conference on computer vision, pp 3032–3039

    Google Scholar 

  30. Wang Q, Zhang Z, Si L (2015) Ranking preserving hashing for fast similarity search. In: International joint conference on artificial intelligence, pp 3911–3917

    Google Scholar 

  31. Järvelin K, Kekäläinen J (2000) IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the international ACM SIGIR conference on research and development in information retrieval. ACM, pp 41–48

    Google Scholar 

  32. Zhang R, Lin L, Zhang R, Zuo W, Zhang L (2015) Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. IEEE Trans Image Proc 24(12):4766–4779

    Article  MathSciNet  Google Scholar 

  33. Zhuang B, Lin G, Shen C, Reid I (2016) Fast training of triplet-based deep binary embedding networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5955–5964

    Google Scholar 

  34. Zhao F, Huang Y, Wang L, Tan T (2015) Deep semantic ranking based hashing for multi-label image retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1556–1564

    Google Scholar 

  35. Liu L, Shao L, Shen F, Yu M (2017) Discretely coding semantic rank orders for supervised image hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1425–1434

    Google Scholar 

  36. Weiss Y, Fergus R, Torralba A (2012) Multidimensional spectral hashing. In: European conference on computer vision, pp 340–353

    Chapter  Google Scholar 

  37. Carreira-Perpinán MA (2010) The elastic embedding algorithm for dimensionality reduction. In: International conference on machine learning, vol 10, pp 167–174

    Google Scholar 

  38. Norouzi M, Blei DM (2011) Minimal loss hashing for compact binary codes. In: International conference on machine learning, pp 353–360

    Google Scholar 

  39. Kulis B, Darrell T (2009) Learning to hash with binary reconstructive embeddings. In: Proceedings of the advances in neural information processing systems, pp 1042–1050

    Google Scholar 

  40. Kang WC, Li WJ, Zhou ZH (2016) Column sampling based discrete supervised hashing. In: Association for the advancement of artificial intelligence

    Google Scholar 

  41. Shi X, Guo Z, Nie F, Yang L, You J, Tao D (2016) Two-dimensional whitening reconstruction for enhancing robustness of principal component analysis. IEEE Trans Pattern Anal Mach Intell 38(10):2130–2136

    Article  Google Scholar 

  42. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  Google Scholar 

  43. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the ieee international conference on computer vision and pattern recognition, pp 886–893

    Google Scholar 

  44. Zhu H, Long M, Wang J, Cao Y (2016) Deep hashing network for efficient similarity retrieval. In: Association for the advancement of artificial intelligence, pp 2415–2421

    Google Scholar 

  45. Li WJ, Wang S, Kang WC (2015) Feature learning based deep supervised hashing with pairwise labels. arXiv:1511.03855

  46. Liu H, Wang R, Shan S, Chen X (2016) Deep supervised hashing for fast image retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2064–2072

    Google Scholar 

  47. Cao Z, Long M, Wang J, Yu PS (2017) Hashnet: deep learning to hash by continuation. In: Proceedings of the IEEE international conference on computer vision, pp 5609–5618

    Google Scholar 

  48. Xia R, Pan Y, Lai H, Liu C, Yan S (2014) Supervised hashing for image retrieval via image representation learning. In: Association for the advancement of artificial intelligence, vol 1, p 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, X., Yang, L. (2019). Deep Hashing and Its Application for Histopathology Image Analysis. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-13969-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13969-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13968-1

  • Online ISBN: 978-3-030-13969-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics