Skip to main content

Abstract

Prognostic tumor growth modeling via volumetric medical imaging observations is a challenging yet important problem in precision and predictive medicine. It can potentially imply and lead to better outcomes of tumor treatment management and surgical planning. Traditionally, this problem is tackled through mathematical modeling. Recent advances of convolutional neural networks (ConvNets) have demonstrated higher accuracy and efficiency than conventional mathematical models can be achieved in predicting tumor growth. This indicates that deep learning based data-driven techniques may have great potentials on addressing such problem. In this chapter, we first introduce a statistical group learning approach to predict the pattern of tumor growth that incorporates both the population trend and personalized data, where deep ConvNet is used to model the voxel-wise spatiotemporal tumor progression. We then present a two-stream ConvNets which directly model and learn the two fundamental processes of tumor growth, i.e., cell invasion and mass effect, and predict the subsequent involvement regions of a tumor. Experiments on a longitudinal pancreatic tumor data set show that both approaches substantially outperform a state-of-the-art mathematical model-based approach in both accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. IJCV 92(1):1–31

    Article  Google Scholar 

  2. Bosman FT, Carneiro F, Hruban RH, Theise ND et al (2010) WHO classification of tumours of the digestive system, 4th edn. World Health Organization, Geneva

    Google Scholar 

  3. Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: ECCV, pp 25–36. Springer, Berlin

    Google Scholar 

  4. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  5. Chen X, Summers RM, Yao J (2013) Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model. IEEE Trans Biomed Eng 60(1):169–173

    Article  Google Scholar 

  6. Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. TMI 24(10):1334–1346

    Google Scholar 

  7. Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: CVPR, pp 1933–1941

    Google Scholar 

  8. Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14(8):777–783

    Article  Google Scholar 

  9. Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. TMI 35(5):1153–1159

    Google Scholar 

  10. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Article  MATH  Google Scholar 

  11. Hogea C, Davatzikos C, Biros G (2007) Modeling glioma growth and mass effect in 3D MR images of the brain. In: MICCAI, pp 642–650

    Google Scholar 

  12. Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825

    Article  MathSciNet  MATH  Google Scholar 

  13. Jia Y (2013) Caffe: an open source convolutional architecture for fast feature embedding. http://caffe.berkeleyvision.org/

  14. Keutgen XM, Hammel P, Choyke PL, Libutti SK, Jonasch E, Kebebew E (2016) Evaluation and management of pancreatic lesions in patients with von hippel-lindau disease. Nat Rev Clin Oncol 13(9):537–549

    Article  Google Scholar 

  15. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS, pp 1097–1105

    Google Scholar 

  16. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  17. Liu C (2009) Beyond pixels: exploring new representations and applications for motion analysis. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  18. Liu Y, Sadowski S, Weisbrod A, Kebebew E, Summers R, Yao J (2014) Patient specific tumor growth prediction using multimodal images. Med Image Anal 18(3):555–566

    Article  Google Scholar 

  19. Maddison CJ, Huang A, Sutskever I, Silver D (2015) Move evaluation in go using deep convolutional neural networks. In: ICLR

    Google Scholar 

  20. Morris M, Greiner R, Sander J, Murtha A, Schmidt M (2006) Learning a classification-based glioma growth model using MRI data. J Comput 1(7):21–31

    Article  Google Scholar 

  21. Neverova N, Luc P, Couprie C, Verbeek J, LeCun Y (2017) Predicting deeper into the future of semantic segmentation. In: ICCV

    Google Scholar 

  22. Nie D, Zhang H, Adeli E, Liu L, Shen D (2016) 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: International conference on medical image computing and computer-assisted intervention, pp 212–220. Springer

    Google Scholar 

  23. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  Google Scholar 

  24. Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: NIPS, pp 568–576

    Google Scholar 

  25. Swanson KR, Alvord E, Murray J (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–329

    Article  Google Scholar 

  26. Warburg O (1956) On the origin of cancer. Science 123(3191):309–314

    Article  Google Scholar 

  27. Weisbrod AB, Kitano M, Thomas F, Williams D, Gulati N, Gesuwan K, Liu Y, Venzon D, Turkbey I, Choyke P et al (2014) Assessment of tumor growth in pancreatic neuroendocrine tumors in von hippel lindau syndrome. J Am CollE Surg 218(2):163–169

    Article  Google Scholar 

  28. Weizman L, Ben-Sira L, Joskowicz L, Aizenstein O, Shofty B, Constantini S, Ben-Bashat D (2012) Prediction of brain MR scans in longitudinal tumor follow-up studies. In: MICCAI, pp 179–187. Springer

    Google Scholar 

  29. Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH (2013) Recent progress in pancreatic cancer. CA Cancer J Clin 63(5):318–348

    Article  Google Scholar 

  30. Wong KC, Summers RM, Kebebew E, Yao J (2015) Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med Image Anal 25(1):72–85

    Article  Google Scholar 

  31. Wong KCL, Summers RM, Kebebew E, Yao J (2017) Pancreatic tumor growth prediction with elastic-growth decomposition, image-derived motion, and FDM-FEM coupling. TMI 36(1):111–123

    Google Scholar 

  32. Yao J, Wang S, Zhu X, Huang J (2016) Imaging biomarker discovery for lung cancer survival prediction. In: MICCAI, pp 649–657. Springer

    Google Scholar 

  33. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, De Vries EG et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364(6):514–523

    Article  Google Scholar 

  34. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3):1116–1128

    Article  Google Scholar 

  35. Zhang L, Lu L, Nogues I, Summers R, Liu S, Yao J (2017) Deeppap: deep convolutional networks for cervical cell classification. IEEE J Biomed Health Inform 21(6):1633–1643

    Article  Google Scholar 

  36. Zhang L, Lu L, Summers RM, Kebebew E, Yao J (2017) Personalized pancreatic tumor growth prediction via group learning. In: MICCAI, pp 424–432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Le, L., Summers, R.M., Kebebew, E., Yao, J. (2019). Tumor Growth Prediction Using Convolutional Networks. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-13969-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13969-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13968-1

  • Online ISBN: 978-3-030-13969-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics