
Performance Comparison and Workload
Analysis of Mesh Untangling and
Smoothing Algorithms

D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

Abstract This paper compares methods for simultaneous mesh untangling
and quality improvement that are based on repositioning the vertices. The
execution times of these algorithms vary widely, usually with a trade-off be-
tween different parameters. Thus, computer performance and workloads are
used to make comparisons. A range of algorithms in terms of quality met-
ric, approach and formulation of the objective function, and optimization
solver are considered. Among them, two new objective function formulations
are proposed. Triangle and tetrahedral meshes and three processors archi-
tectures are also used in this study. We found that the execution time of
vertex repositioning algorithms is more directly proportional to a new work-
load measure called mesh element evaluations than other workload measures
such as mesh size or objective function evaluations. The comparisons are em-
ployed to propose a performance model for sequential algorithms. Using this
model, the workload required by each mesh vertex is studied. Finally, the
effects of processor architecture on performance are also analyzed.

1 Introduction
Mesh optimizing techniques reduce the total time to solution and improve the
accuracy of results of PDE solvers. Processing a mesh can spend up to 25%
of the overall running time of a PDE-based application [5]. When a mesh
element is inverted, standard finite element simulation algorithms cannot
numerically solve the PDE, although some methods are being investigated
to solve a PDE on a tangled mesh [20]. Thus, researchers and practitioners
recommend untangling the mesh prior to analysis using commercial packages.

Vertex repositioning algorithms (VrPA) have been adopted by a vast ma-
jority of mesh optimization applications [6, 7, 17], including hex meshes
[11, 14]. VrPA algorithms improve the quality of a mesh by moving its free
vertices. They can be posed as numerical techniques in which the following
parameters are considered [6]: objective function approach (A) and formula-
tion (f), element quality metric (q), minimization method (NM) and conver-
gence or termination criteria (TC). The execution times of these numerical
algorithms vary widely, usually with a trade-off between parameters.

SIANI institute & DIS department, University of Las Palmas de Gran Canaria, Spain.

1

2 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

There are few studies that compare the performance of mesh optimization
algorithms. Diachin et al. compared the performance of two VrPA algorithms
[6]. One of them employed an inexact Newton method and the all-vertex
approach to numerically optimize the global objective function. The other
algorithm used a coordinate descent method and the single-vertex approach.

Sastry and Shontz compared the performance of several optimization
methods for mesh quality improvement [15]. They considered all-vertex and
single-vertex approaches in combination with gradient and Hessian-based op-
timization solvers. In their paper, it is showed that performance can vary
significantly, depending on the choice of mesh quality metric.

These previous studies considered valid input meshes, smoothing algo-
rithms, one objective function formulation, and one processor architecture.
In our work, up to 34 algorithms that simultaneously untangle and smooth
meshes composed of two different element topologies and three processor ar-
chitectures are considered. Additionally, three mesh quality metrics and five
objective function formulations, two of them new, are investigated (Section
2). A single generalized version of the sequential VrPA algorithm is used
(Section 3), and its implementation details are explained in Section 4.

One of our goals is to determine when one of these methods for mesh
untangling and smoothing and why one processor is preferable to the oth-
ers (Section 5). Preference includes the execution time, success in untangling
meshes and the quality of the optimum mesh produced. To gain insights into
the causes of performance variability, the workload of VrPA algorithms is
analyzed (Sections 6 & 7). Another goal is to model the performance of se-
quential VrPA algorithms. Thus, we propose a performance model for mesh
optimization and its accuracy is studied in Section 8. We have also investi-
gated the causes of the variability in time of VrPA methods (Section 9).

2 Free parameters of the study
The vertex repositioning problem has been formulated by other authors [6].
There are many choices for each free parameter one could make in a study
of VrPA algorithms. In this paper, we limited the options to those shown in
Table 1. Each combination of choices will be called VrPA configuration and
denoted:

〈
A
〉
-
〈
f
〉
-
〈
q
〉
-
〈
NM

〉
-
〈
TC
〉
, for instance, “Lo-D1-hS-SD-TC2”.

2.1 Novel objective function formulations
Table 1 includes two new objective functions for mesh untangling and quality
improvement called Logarithmic distortion-based barrier (Equation 1, log1)
and Regularized distortion-based barrier (Equation 2, inv), where qi is the
quality metric function, n is the number of free elements involved in forming
the objective function and µ, δ and τ are constants.

K = 1
qmin

−µ
n∑
i=1

log(τ

qmin
− 1
qi

) qmin =min(qi)i∈{1...n} (1)

Performance Comparison and Workload Analysis of VrPA Algorithms 3

K =
n∑
i=1

1
qi

+ 1
h
(1
qmin

− 1
qi

) h(z) = 1
2

(
z+
√
z2 + 4δ2

)
(2)

These barrier objective functions are defined for differentiable quality met-
rics whose maximum and minimum values are the qualities of ideal and de-
generate elements, respectively. This formulation assumes that the quality
of an element should be maximized in order to obtain the ideal element.
Thus, our new barrier functions are used in vertex repositioning methods
that minimize the objective function.

Table 1 Free VrPA parameters and their choices that are considered in this paper.
Legend: RW denotes related work.

Parameter Options RW

Objective function
approach (A):

K =
∑n

i=1 f(qi)

n: total free elements*

Gl: All-vertex
(K: Global function) n=NM : free elements*

of mesh
[6]

Lo: Single-vertex
(K: Local function)

n=Nv : free elements*
of local patch

[6]

Objective function
formulation: f(qi)

qi: quality of ith element

qmin =min(qi)i∈{1...n}

h(z) = 1
2

(
z+
√
z2 + 4δ2

)
δ,µ,τ = constants

D1: Distortion 1 f(qi) = q−1
i [3]

D2: Distortion 2 f(qi) = q−2
i

[3]

log1: Logarithmic
barrier 1

f(qi) = n−1q−1
min−

µ log(τ q−1
min− q

−1
i)

new,
see
2.1

log2: Logarithmic
barrier 2

f(qi) = n−1qmin+
µ log(qi− qmin)

[16]

inv: Regularized barrier
f(qi) = q−1

i +
1

h
(
q−1
min
−q−1
i

) new,
see
2.1

Element quality
metric: qi

Si: Jacobian matrix
|| ||F : Frobenius norm

h(z) = 1
2

(
z+
√
z2 + 4δ2

)
σi = determinant(Si)
triangle : d= 2, s= 3

tetrahedron : d= 3, s= 6
a,b,δ,λ= constants

hS: Regularized
mean-ratio qi = d [h(σi)]2/d∣∣∣∣Si∣∣∣∣2

F

[7]

MQ: Hybrid
quality metric

vol = element volume
lj= element edge lengths

qi = λ vol
1+ea λ vol + A

1+e−b A

A= vol

Ld/2 L=
∑s

j=1 l
2
j

[16]

TU: Untangle
quality metric qi = 2

(
−σi+

√
σ2
i + δ2

)−1
[3]

Numerical minimiza-
tion method (NM)

CG: Conjugate Gradient Polack-Ribiere,
analytical derivatives [3]

SD: Steepest Descent Analytical derivatives [3]
Termination
criteria (TC)

Qi: mean-ratio quality
value of the ith element

Qmin =min(Qi)i∈{1...NM}

TC1 (untangled mesh) true= (Qmin > 0) [3]
TC2 (optimum mesh)
Q: average mean-ratio

value of mesh
∆: maximum variation

between outer iterations

true= (Qmin > 0 and
∆Q< 10−3 and
∆Qmin < 10−3)

* Free element: mesh element with at least one free vertex.

4 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

2.2 Calculation of the constant value for δ

Our experience has shown that the constant values involved in the calculation
of quality metrics can determine whether a mesh untangling algorithm is
successful in producing meshes without inverted elements. δ in Equation 2
and Table 1 represents a constant value that depends on the mesh in all-
vertex approach (n=NM) or submesh in single-vertex approach (n=Nv):

δ = max{ 10−3 σ̄, Re(10
√
ε(ε−σmin)) } (3)

σ̄ = 1
n

n∑
i=1
|σi| σmin = min{σi}i∈{1,...,n} ε= 1011DBL_EPS

where σi is defined in Table 1 and DBL_EPS is upper bound on the relative
error due to rounding in floating-point arithmetic. δ is always recalculated
before a different vertex is optimized by a single-vertex method. For all-vertex
methods, δ is recalculated before a different mesh iteration begins.

This calculation of δ was applied to the known metric called untangle
quality metric and denoted TU [3] (see Table 1). For the TU metric and the
regularized mean-ratio quality metric (hS), this strategy is key to successfully
producing a mesh without inverted elements when the input mesh is tangled.

3 Sequential VrPA algorithm
Many mesh optimization applications employ a VrPA that is similar to Al-
gorithm 1 [6, 7, 17]. It consists of a variable number of mesh sweeps. In each
of them, every vertex is processed and can be repositioned by the numerical
solver. The vertices that lie on the mesh surface are treated as fixed and are
not updated.

The most time-consuming operation called V ertexRepositioning moves
free vertices (V) of an input mesh (M). It iterates an inner loop (lines 9-24)
while an extreme of the objective function (K) is being reached by a numer-
ical method (NM). K is constructed after determining the above mentioned
VrPA parameters: A, f and q (lines 17-20). LogicFunction uses a termi-
nation criterion (TC) to stop the algorithm (line 30). The outer loop (lines
30-37) is iterated in the Main procedure while LogicFunction is not true.
In each outer iteration, the spatial coordinates of all free vertices (XV) are
updated, and so a mesh sweep is implemented. GlobalMeasures provides the
average and worst mean-ratio quality metric of the mesh [6]. At the end of
the algorithm, an optimized mesh is obtained.

4 Experimental setup
Algorithm 1 was used to compare the above mentioned VrPA configurations.
The following paragraphs describe details of the implementation.

Software framework. We developed complete programs that include
double-precision floating-point data structures and PAPI functions for hard-

Performance Comparison and Workload Analysis of VrPA Algorithms 5

Algorithm 1 - Sequential mesh vertex repositioning algorithm.
1: . Input: file with information of M mesh
2: #define: approach (A), formulation (f), quality metric (q), numerical optimization method (NM)
3: #define termination criteria: TC = LogicFunction(Qmin,∆Q,∆Qmin)
4: #define constants: τ = 10−6 (maximum or minimum increase of the objective function), NmII = 150

(maximum number of inner iterations), NmOI = 100 (maximum number of outer iterations)
5: Ne← 0, Nf ← 0 . Global variables: element evaluations (Ne), objective function evaluations (Nf)
6: procedure VertexRepositioning(W,X,n)
7: .Inputs : W (free vertices),X(their coordinates),n(number of elements)
8: . Initiation : K = 0, ∆K = 0, m = 0 (inner loop index)
9: while (∆K ≤ τ(minimizing) or ∆K ≥ τ(maximizing)) and m≤NmII do . Inner loop

10: X̂←X . Returned spatial coordinates (X̂) of vertices (W)
11: . Initiation : P ← 0 . Moving directions: P = {pv},v ∈W
12: for i = 1, . . . ,n do . n: number of free elements
13: for each free vertex v of ith free element do
14: pv += NM(f ′(qi),v) . f ′: derivatives used in NM
15: Ne + = 1 . Number of mesh element evaluations
16: X← X̂ + P . Tentative positions of free vertices
17: Kt← 0 . Initial value of objective function
18: for i = 1, . . . ,n do
19: Kt += f(qi) . MESH ELEMENT EVALUATION
20: Ne + = 1 . Number of mesh element evaluations
21: ∆K←Kt−K
22: K←Kt . Final value of objective function
23: Nf + = 1 . Number of evaluations of the objective function and its derivative
24: m + = 1 . Number of inner iterations
25: return X̂ . Output: updated coordinates of free vertices
26: procedure main()
27: . Read the vertex and element information of M mesh
28: Qmin← GlobalMeasures(M) . Minimum quality of input mesh
29: . Initiation : ∆Q = 106, ∆Qmin = 106, k = 0 (loop index)
30: while TC 6= true and k ≤NmOI do . Mesh/Outer loop
31: if A = Gl then . Gl : all-vertex approach
32: XV ← VertexRepositioning(V,XV ,NM)
33: else . Lo : single-vertex approach
34: for each free vertex v ∈M do
35: xv ← VertexRepositioning(v,xv ,Nv)
36: (Qmin,∆Q,∆Qmin)← GlobalMeasures(M)
37: k + = 1 . Number of mesh/outer iterations
38: . Output: file with information of optimized M mesh

ware performance monitoring [4]. The source code includes some C++ classes
and methods from the Mesquite framework [3]; all of them were modified
to evaluate the computer performance and workload of vertex repositioning
algorithms. The Mesquite method TU was also modified as previously ex-
plained in Section 2.2. We created new C++ classes and methods to support
hS and MQ quality metrics, log1, log2 and inv objective function formu-
lations and TC2 termination criteria (see Table 1). We used gcc 4.8.4 with
-O2 flag on Linux systems. For each VrPA configuration, we repeated the ex-
ecution of the programs several times, such that the 95% confidence interval
was lower than 1%.

Benchmark meshes. Algorithm 1 was applied on the unstructured,
fixed-sized meshes shown in Figure 1 whose characteristics are in Table 2.
All the mesh sizes were always fixed. The 2D mesh was obtained by using
Gmsh tool [8], taking a square, meshing with triangles and displacing selected
nodes of the boundary. This type of tangled mesh can be found in some prob-
lems with evolving domains [9]. All 3D meshes were obtained from a tool,
called The Meccano Method, for adaptive tetrahedral mesh generation that
tangles the mesh in one of its intermediate stages [12].

6 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

Input meshes (unstructured, tangled, fixed-size)

Output optimized meshes using the "Lo-D1-hS-SD-TC2" configuration

(a) Square (2D) (b) Toroid (3D) (c) Screwdriver (3D) (d) Egypt (3D)

Fig. 1 Input and output meshes for four optimization problems solved with the same
VrPA algorithm.

Table 2 Characteristics of input meshes, which have inverted elements: Qmin=0.
Mesh characteristic Square Toroid Screwdriver Egypt

Total vertices 3314499 9176 39617 1724456
Free vertices (they can be moved) 3309498 3992 21131 1616442

Fixed vertices (they are not moved) 5001 5184 18486 108014
Element type: triangle (2D), tetrahedron (3D) 2D 3D 3D 3D

Total free elements (NM) 6620936 35920 168834 10013858
Inverted/Tangled elements (%) 0.1% 38.2% 49.4% 46.2%

Average number of elements of local patch (Nv) 6.00 21.27 21.51 23.96
Average edge length 0.02 1.49 8.96 14.30

Standard deviation of the edge length 0.02 1.86 6.22 5.79
Average mean-ratio quality metric (Q) 0.95 0.17 0.13 0.23

Standard deviation of the mean-ratio metric 0.05 0.31 0.21 0.27

Figure 2 shows some convergence plots that represent the worst mean-ratio
quality metric and the number of inverted elements versus the number of mesh
iterations. They were obtained when the Lo-D1-hS-SD-TC2 configuration was
used to optimize two of the meshes. The rest of ". . . -TC2" configurations and
meshes reported in this paper exhibit similar convergence behaviors. Two
consecutive stages can be identified in each optimization problem. Firstly,
an untangling stage in which the inverted elements decrease over time to
zero. Secondly, a smoothing stage where the worst mean-ratio quality metric
increases from zero to a stable value, when TC2 is met. The convergence
behaviors of ". . . -TC1" configurations exhibit only the untangling stage.

Processor Cores. Numerical experiments were conducted on three com-
puters with different processor models. One of them is Intel Xeon E5645
that integrates 6 Westmere-EP cores whose clock speed is 2.4 GHz and are
connected to 48 GB of DDR3/1600 MHz. Another processor is Intel Xeon
E5-2670 that integrates 8 Sandy Bridge-EP cores whose clock speed is 2.6
GHz and are connected to 32 GB of DDR3/1333 MHz. The third proces-
sor is Intel Xeon E5-2690V4 that integrates 14 Broadwell cores whose clock
speed is 2.6 GHz and are connected to 256 GB of DDR4/2400 MHz. During
the experiments, the compute nodes were not shared among other user-level
workloads. Additionally, multithreading and Turbo Boost were disabled.

Performance Comparison and Workload Analysis of VrPA Algorithms 7

0 10 20 30 40 50 60 70 80 90
MESH ITERATION

0.0

0.2

0.4

0.6

0.8

1.0

M
IN

IM
UM

 Q
UA

LI
TY

0.0

0.2

0.4

0.6

0.8

1.0

IN
VE

RT
ED

 E
LE

M
EN

TS

1e4

MESH: SQUARE

MINIMUM QUALITY
INVERTED ELEMENTS

1 2 3 4 5 6 7 8 9 10
MESH ITERATION

0.0

0.2

0.4

0.6

0.8

1.0

M
IN

IM
UM

 Q
UA

LI
TY

0.0

0.4

0.8

1.2

1.6

2.0

IN
VE

RT
ED

 E
LE

M
EN

TS

1e4

MESH: EGYPT

MINIMUM QUALITY
INVERTED ELEMENTS

Fig. 2 Convergence plots obtained when the Lo-D1-hS-SD-TC2 configuration was em-
ployed to optimize the Square (left) and Egypt (right) meshes.

5 Performance comparison of VrPA algorithms

The execution time of Algorithm 1 varies widely, usually with a trade-off
between different VrPA parameters. This can be seen in Figures 3 and 4 that
show the results of a performance evaluation using 136 configurations and
two processors (E5645, E5-2670). Those configurations that not appear in
these figures produce tangled meshes.

Results are grouped by benchmark mesh. Each graph distinguishes the
convergence criterion established and the processor used. The goal of the
TC1 criterion is to produce a mesh with no inverted elements. The other
criterion, TC2, is met when the mesh is optimum, i.e., the increase in both
the worst and average mean-ratio quality metrics after two successive mesh
iterations are below a certain threshold. These graphs include the average
and minimum mean-ratio quality metrics of output meshes. Note that there
is more variability in the execution time than in the quality metrics.

Table 3 shows the fastest VrPA configuration for each mesh when the
TC1 convergence criterion was established. The main results of this partial
analysis are as follows: (1) the minimum quality metrics (Qmin) of output
meshes vary significantly; (2) global approaches (Gl− . . .) frequently achieve
larger Qmin than local approaches (Lo− . . .); (3) the average quality metrics
(Q) of output meshes exhibit much less variability than the minimum values;
(4) the fastest algorithm always uses Gl approach, hS metric and SD solver;
(5) the fastest configurations on all processors are the same; (6) the solver
with superior performance is not always the same; however, the performance
behavior of the SD solver is frequently superior to the CG solver.

Table 4 shows the fastest configuration for each mesh when the TC2 cri-
terion was established. The main conclusions of this another analysis are:
(1)Qmin is much larger and exhibits less variability than for mesh untangling
(TC1); (2) the algorithms that achieve the largest Qmin always use local
approach (Lo− . . .) and barrier formulation (log1, log2, inv); (3) Q exhibits
slightly larger values and less variability than for mesh untangling; (4) there
are no significant differences in Qmin and Q between SD and CG solvers,

8 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

100

101

102

103

104

TI
M

E
[s

ec
]

MESH: Toroid TC=TC1,cpu=E5645
TC=TC1,cpu=E5-2670
TC=TC2,cpu=E5645
TC=TC2,cpu=E5-2670

Lo-D1-hS-CG-(TC)

Lo-D2-hS-CG-(TC)

Lo-log1-hS-CG-(TC)

Lo-inv-hS-CG-(TC)

Lo-D1-TU-CG-(TC)

Lo-log2-MQ-CG-(TC)

Lo-D1-hS-SD-(TC)

Lo-D2-hS-SD-(TC)

Lo-log1-hS-SD-(TC)

Lo-inv-hS-SD-(TC)

Gl-D1-hS-CG-(TC)

Gl-D2-hS-CG-(TC)

Gl-log1-hS-CG-(TC)

Gl-inv-hS-CG-(TC)

Gl-D1-hS-SD-(TC)

Gl-D2-hS-SD-(TC)

Gl-log1-hS-SD-(TC)

Gl-inv-hS-SD-(TC)

VrPA CONFIGURATION

0.0

0.5

1.0

M
EA

N-
RA

TI
O

QU
AL

IT
Y

M
ET

RI
C TC=TC1,minimum

TC=TC1,average
TC=TC2,minimum
TC=TC2,average

104

105

TI
M

E
[s

ec
]

MESH: Square
TC=TC1,cpu=E5645
TC=TC1,cpu=E5-2670
TC=TC2,cpu=E5645
TC=TC2,cpu=E5-2670

Lo-D1-hS-CG-(TC)

Lo-D2-hS-CG-(TC)

Lo-log1-hS-CG-(TC)

Lo-inv-hS-CG-(TC)

Lo-D1-TU-CG-(TC)

Lo-log2-MQ-CG-(TC)

Lo-D1-hS-SD-(TC)

Lo-D2-hS-SD-(TC)

Lo-log1-hS-SD-(TC)

Lo-inv-hS-SD-(TC)

Gl-D1-hS-CG-(TC)

Gl-D2-hS-CG-(TC)

Gl-log1-hS-CG-(TC)

VrPA CONFIGURATION

0.0

0.5

1.0

M
EA

N-
RA

TI
O

QU
AL

IT
Y

M
ET

RI
C TC=TC1,minimum TC=TC1,average TC=TC2,minimum TC=TC2,average

Fig. 3 Execution times and quality metrics for the Square and Toroid meshes.

except for the Toroid mesh whose results obtained with CG solver are supe-
rior; (5) the fastest algorithm always uses the SD solver and D1 formulation;
additionally, the hS quality metric takes more times the first place in the
rank ordering of performance than the other formulations and quality met-
rics; (6) the fastest configurations on both processors are again coincident;
(7) the ratio of the time required by the configuration with the largest Qmin
to the lowest time is larger than the ratio of respective Qmin except for the
Screwdriver mesh; this means that the highest performance configurations

Performance Comparison and Workload Analysis of VrPA Algorithms 9

102

103

TI
M

E
[s

ec
]

MESH: Screwdriver
TC=TC1,cpu=E5645
TC=TC1,cpu=E5-2670
TC=TC2,cpu=E5645
TC=TC2,cpu=E5-2670

Lo-D1-hS-CG-(TC)

Lo-D2-hS-CG-(TC)

Lo-log1-hS-CG-(TC)

Lo-inv-hS-CG-(TC)

Lo-D1-TU-CG-(TC)

Lo-log2-MQ-CG-(TC)

Lo-D1-hS-SD-(TC)

Lo-D2-hS-SD-(TC)

Lo-log1-hS-SD-(TC)

Lo-inv-hS-SD-(TC)

Gl-D1-hS-CG-(TC)

Gl-D2-hS-CG-(TC)

Gl-log1-hS-CG-(TC)

Gl-inv-hS-CG-(TC)

Gl-D1-hS-SD-(TC)

Gl-D2-hS-SD-(TC)

Gl-log1-hS-SD-(TC)

Gl-inv-hS-SD-(TC)

Lo-D1-hS-CG-(TC)

VrPA CONFIGURATION

0.0

0.5

1.0

M
EA

N-
RA

TI
O

QU
AL

IT
Y

M
ET

RI
C TC=TC1,minimum

TC=TC1,average
TC=TC2,minimum
TC=TC2,average

103

104

105

TI
M

E
[s

ec
]

MESH: Egypt
TC=TC1,cpu=E5645
TC=TC1,cpu=E5-2670
TC=TC2,cpu=E5645
TC=TC2,cpu=E5-2670

Lo-D1-hS-CG-(TC)

Lo-D2-hS-CG-(TC)

Lo-log1-hS-CG-(TC)

Lo-inv-hS-CG-(TC)

Lo-D1-TU-CG-(TC)

Lo-log2-MQ-CG-(TC)

Lo-D1-hS-SD-(TC)

Lo-D2-hS-SD-(TC)

Lo-log1-hS-SD-(TC)

Lo-inv-hS-SD-(TC)

Gl-D1-hS-CG-(TC)

Gl-D2-hS-CG-(TC)

Gl-log1-hS-CG-(TC)

Gl-inv-hS-CG-(TC)

Gl-D1-hS-SD-(TC)

Gl-D2-hS-SD-(TC)

Gl-log1-hS-SD-(TC)

Gl-inv-hS-SD-(TC)

VrPA CONFIGURATION

0.0

0.5

1.0

M
EA

N-
RA

TI
O

QU
AL

IT
Y

M
ET

RI
C TC=TC1,minimum

TC=TC1,average
TC=TC2,minimum
TC=TC2,average

Fig. 4 Execution times and quality metrics for the Screwdriver and Egypt meshes.

may be the best choices for obtaining approximate solutions in the smallest
amount of time.

6 Global workload analysis of VrPA algorithms
Some authors use the number of elements (mesh size) as a workload measure
to estimate the execution time of VrPA algorithms [15, 17]. However, this
can be accurately done only when the configuration is fixed and the total

10 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

Table 3 VrPA configurations with lowest runtimes for the TC1 convergence criterion.
Ne is the number of mesh element evaluations that were required by each configuration.

Benchmark
mesh

Fastest VrPA configuration

Configuration
CPU time [s]

Ne

largest CPU time
CPU time

E5645 E5-2670 E5645 E5-2670

Square Gl-D1-hS-SD-TC1 4.96 103 3.87 103 4.42 109 13.8 12.8

Toroid Gl-D1-hS-SD-TC1 7.4 4.61 8.73 106 8320.9 10691.2

Screwdriver Gl-log1-hS-SD-TC1 1.66 102 1.17 102 1.84 108 6.1 6.0

Egypt Gl-inv-hS-SD-TC1 3.86 103 2.41 103 3.38 109 10.8 10.4

Table 4 VrPA configurations that meet the TC2 convergence criterion and achieve the
lowest CPU time or the largest Qmin (worst mean-ratio quality metric).

Mesh Comparison
criterion Best configuration

CPU time (sec)
Qmin

time largest Qmin
lowest time

E5645 E5-2670 E5645 E5-2670

Square
lowest tCPU Gl-D1-hS-SD-TC2 2.44 104 1.84 104 0.633

7.3 8.2
largest Qmin Lo-log1-hS-SD-TC2 1.78 105 1.51 105 0.791

Toroid
lowest tCPU Gl-D1-hS-SD-TC2 1.47 101 9.56 0.13

82 95
largest Qmin Lo-inv-hS-CG-TC2 1.21 103 9.12 102 0.369

Screwdriver
lowest tCPU Lo-log2-MQ-SD-TC2 3.04 102 2.73 102 0.03

3.6 3.0
largest Qmin Lo-inv-hS-CG-TC2 1.1 103 8.27 102 0.257

Egypt
lowest tCPU Lo-D1-hS-SD-TC2 1.15 104 9.11 103 0.201

11 12
largest Qmin Lo-log1-hS-SD-TC2 1.26 105 1.05 105 0.311

numbers of inner and outer iterations of the algorithm are both fixed. In this
case, the execution time is directly proportional to the size of the mesh.

For the algorithms where the VrPA parameters are free and the number of
iterations is variable and based on convergence criteria, this proportionality
is not evident as can be seen in Figure 5(a). This figure shows a graph of
mesh size versus execution time that was derived from the results of the
above-described experiments for mesh untangling. Each point represents one
of 68 VrPA configurations that successfully untangle a fixed-size test mesh
(see the ". . . -TC1" configurations in Figures 3 & 4). The correlation coefficient
between time and mesh size taken in the linear scale is r=0.44.

The number of evaluations of the objective function and its derivative
(Nf) has also been used as a workload measure in numerical algorithms [18].
Line 23 in Algorithm 1 was employed to count the number of evaluations of
the objective function and its derivative. Figure 5(b) shows a graph of Nf
versus time for the same ". . . -TC1" configurations. In this case, the correlation
coefficient between time and Nf taken in the linear scale is r=0.45.
Ne in Algorithm 1 is called number of mesh element evaluations and mea-

sures the number of evaluations of the element quality metric and its deriva-

Performance Comparison and Workload Analysis of VrPA Algorithms 11

tive. This measure involves computing the separable but not independent
parts of objective function evaluations. Although not exactly the same defi-
nition, the mesh element evaluation is slightly similar to the concurrent func-
tion evaluation step defined in [18] for identifying parallelism opportunities
in finite difference gradients.

Figure 5(c) shows a graph of Ne versus execution time for the ". . . -TC1"
configurations. In this case, the correlation coefficient between time and Ne
taken in the linear scale is r=0.93. Therefore, execution time is more directly
proportional to the number of mesh element evaluations than the mesh size
or the number of objective function evaluations. It is important to note that
Ne is not very intrusive and depends not only on the problem size but also on
the numbers of inner and outer iterations required to meet the convergence
criteria. Thus, we will use Ne as a workload measure for VrPA algorithms in
a new performance model that is proposed below.

Some of the fastest configurations that were evaluated in Section 5 achieve
the highest performance because they need fewer element evaluations than

4.5 5.0 5.5 6.0 6.5 7.0
log(MESH SIZE [elements])

1

2

3

4

5

lo
g(

 E
XE

CU
TI

ON
 T

IM
E

[s
])

(a) Mesh size vs. time: r=0.44.

2 4 6 8 10
log(FUNCTION EVALUATIONS)

1

2

3

4

5

lo
g(

 E
XE

CU
TI

ON
 T

IM
E

[s
])

(b) Function evaluations vs. time: r=0.45.

7 8 9 10 11
log(MESH ELEMENT EVALUATIONS)

1

2

3

4

5

lo
g(

 E
XE

CU
TI

ON
 T

IM
E

[s
])

(c) Element evaluations vs. time: r=0.93.
Fig. 5 Scalability of the algorithms for mesh untangling (convergence criterion: TC1)
using different workload measures, the E5645 processor and the four benchmark meshes.
r is the correlation coefficient taken in the linear scale.

12 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

the others (see Ne in Table 3). This was the case for all of our test meshes ex-
cept Toroid when the TC1 criterion was established. To untangle the Toroid
mesh, Gl-inv-hS-SD-TC1 configuration needs less Ne (8.23 106) than the
fastest configuration (8.73 106). However, its time per element evaluation is
sufficiently larger than the fastest configuration such that the time to con-
vergence is not the lowest.

In summary, the performance of VrPA algorithms depends on the balance
between two factors: the global workload measured in number of element eval-
uations and the time per element evaluation. The first factor is independent of
the computer hardware; it depends on the algorithm and its implementation,
the selected numerical accuracy of data structures, and the method chosen
by the compiler to implement arithmetic operations. Moreover, the number
of evaluations also depends on the characteristics of the input mesh such as
the quality of elements or the number both of free vertices and of elements
of each patch. The second factor is affected also by all these algorithmic,
software and mesh aspects in addition to the computer hardware.

7 Analysis of the workload required by a free vertex

For a deeper understanding of VrPA algorithms, this section analyzes the
workload required by vertices. Figure 6 shows the average and standard de-
viation of the number of element evaluations (Ne) that were needed by each
free vertex in every outer iteration for a selection of configurations. Note that
vertices are sorted by number of element evaluations from largest to smallest.

As it can be seen, the average workload per vertex of algorithms that use
local approach (Lo− . . .) is unbalanced, i.e., there is a large range of workloads
(see the black lines in Figures 6(a), 6(b), 6(d)). The maximum of the range
can be one order of magnitude larger than the minimum. The variance of
the number of element evaluations per vertex over different mesh iterations
is also variable. It can be as large as the mean value (see Figure 6(b)), or
close to zero (see Figures 6(a), 6(d)).

The algorithms that use a global approach (Gl− . . .) exhibit very different
workload behaviors. The average and variance of the number of element evalu-
ations per free vertex and mesh iteration are both constants (see Figure 6(c)).
This is due to that each free vertex is repositioned after the displacement di-
rections of all vertices have been obtained. A common way to do this is to
evaluate all elements in each evaluation of the single objective function and
its derivative (see lines 12-15,18-20 in Algorithm 1).

In contrast, a local algorithm uses many independent objective functions,
each of them determines the displacement direction of a single vertex. The
number of element evaluations required for every objective function is vari-
able. Thus, each free vertex causes a different computer workload. As the
vertices are repositioned in series and the execution time was demonstrated
in Section 6 that is highly correlated with the number of element evaluations,
each vertex contributes to the total execution time differently.

Performance Comparison and Workload Analysis of VrPA Algorithms 13

0 1 2 3
VERTEX ID 1e6

0.5

1.0

1.5

2.0

NU
M

BE
R

OF
 E

LE
M

EN
T

EV
AL

UA
TI

ON
S

PE
R

IT
ER

AT
IO

N 1e3
MEAN and STANDARD DEVIATION

(a) Mesh: Square, VrPA: Lo-D2-hS-SD-TC1,
14 mesh iterations, 5.1 10−7sec/evaluation.

0 1 2 3 4
VERTEX ID 1e3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

NU
M

BE
R

OF
 E

LE
M

EN
T

EV
AL

UA
TI

ON
S

PE
R

IT
ER

AT
IO

N 1e4
MEAN and STANDARD DEVIATION

(b) Mesh: Toroid, VrPA: Lo-D1-hS-CG-TC1,
14 mesh iterations, 4.2 10−7sec/evaluation.

0.0 0.5 1.0 1.5 2.0
VERTEX ID 1e4

1.8

2.0

2.2

2.4

2.6

NU
M

BE
R

OF
 E

LE
M

EN
T

EV
AL

UA
TI

ON
S

PE
R

IT
ER

AT
IO

N 1e3
MEAN and STANDARD DEVIATION

(c) Mesh: Screwdriver, Gl-log1-hS-SD-TC1, 4
mesh iterations, 9.5 10−7sec/evaluation.

0.0 0.5 1.0 1.5
VERTEX ID 1e6

0.0

0.2

0.4

0.6

0.8

1.0

NU
M

BE
R

OF
 E

LE
M

EN
T

EV
AL

UA
TI

ON
S

PE
R

IT
ER

AT
IO

N 1e4
MEAN and STANDARD DEVIATION

(d) Mesh: Egypt, VrPA: Lo-D1-hS-SD-TC1,
3 mesh iterations, 5.2 10−7sec/evaluation.

Fig. 6 Mean and standard deviation of the number of element evaluations per free ver-
tex and mesh iteration. These results were obtained using the TC1 termination criterion
for mesh untangling, the E5645 processor, a selected group of VrPA configurations and
all the benchmark meshes.

8 Sequential performance model
Performance models combine methods that provide expectations on perfor-
mance and instrumentation tools that find parameters with empirical mea-
surements [1]. Taking the findings of Section 6, we use a simple one-parameter
model to understand the performance of sequential VrPA algorithms,

tCPU = α Ne (4)

where tCPU denotes the execution time, Ne denotes the number of mesh
element evaluations and α denotes the model parameter that represents the
time per element evaluation. Equation 4 assumes that the computation time
is much larger than the total input/output time. In this way, the time to
optimize a mesh is directly proportional to the number of element evaluations.

This model may justify previous experimental observations where more
element evaluations cause usually larger runtimes. However, there are VrPA
configurations with fewer element evaluations than others that require more
runtime (see Figure 5(c)). This effect can be justified by our model.

14 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

Equation 4 calculates the time by multiplying two factors. A VrPA configu-
ration can need larger number of element evaluations than other: Ne,1 >Ne,2.
However, the second algorithm can evaluate each element in more time than
the first algorithm: α1 < α2. This is what happens to some configurations.

Taking the execution times and the respective numbers of element evalu-
ations for the TC2 convergence criterion, we calculated the time per element
evaluation for each configuration using Equation 4. These results for the
Screwdriver mesh are shown in Figure 7(a). We found similar results when
the other benchmark meshes were optimized. As it can be seen, each configu-
ration causes a different time per element evaluation. Combining the results
shown in Figures 5(c) and 7(a), it can be demonstrated that the time per
element evaluation is not correlated with the number of element evaluations
(E5645 processor: r=-0.04). Therefore, the smallest product of the two factors
of Equation 4 determines what algorithm achieves the best performance.

8.1 Model application and accuracy
To check the accuracy of our one-parameter model, we used the 68 configura-
tions of Section 5 that meet the TC1 convergence criterion. Note that we let
all the VrPA parameters and input meshes vary freely except the termination
criterion. Randomly chosen, half of the VrPA configurations were used to de-
rive α. We calculated for each configuration the ratio of execution time to the
number of element evaluations: α= tCPU/Ne. After averaging the results, α
was 6.7 10−7 and 4.9 10−7 [sec/element] when E5645 and E5-2670 processor
cores were used, respectively. The relative errors in estimating the execution
times were obtained with the other half of configurations, α and Equation 4.
The average relative errors were 0.27 and 0.34 for the E5645 and E5-2670
processor cores, respectively.

We extended this accuracy analysis by setting free only one of the five
VrPA parameters (see Table 1). The input mesh was considered as a sixth
parameter. For this study, we analyzed a total of 136 configurations. From
these configurations, we took groups that have one free and five fixed param-
eters. Due to the possible choices of each parameter, the number of config-
urations included in every group was between two and five. For each group,
we obtained the mean time per element evaluation (α). Then, we compared
the time provided by our model (Equation 4) with the real execution time for
each configuration in every group. The mean and maximum relative errors of
our model using the above-mentioned processors are shown in Table 5.

The errors are caused by the variability in the values of α that are ob-
tained for the configurations that constitute each group. The largest variabil-
ity about the mean occurs in the groups that combine all-vertex and single-
vertex algorithms where the rest of VrPA parameters are the same. Our model
fits best when it is applied to a single VrPA algorithm and mesh. In this case,
the same α can be used to justify accurately the execution time for different
convergence criteria. Moreover, our results indicate that the model parameter

Performance Comparison and Workload Analysis of VrPA Algorithms 15

(α) depends on the processor architecture. Thus, α must be recalculated if
the processor changes.

Table 5 Mean and maximum relative errors in estimating the execution times of VrPA
algorithms on E5645 and E5-2670 processors.

CPU : E5645 CPU : E5 − 2670
Free VrPA parameter Mean Max. Mean Max.

Approach (A) 0.28 0.61 0.19 0.61
Formulation (f) 0.07 0.12 0.06 0.17
Quality metric (q) 0.05 0.10 0.05 0.11

Numerical method (NM) 0.08 0.17 0.08 0.16
Convergence criteria (T C) 0.01 0.02 0.01 0.04

Mesh 0.07 0.20 0.09 0.41

9 Architectural analysis
As it can be seen in Figures 3 and 4, the E5-2670 processor core outperforms
the E5645 core. Our performance model (Equation 4) indicates that it is
due to smaller time per element evaluation (α) as the number of element
evaluations (Ne) of a VrPA algorithm is the same on both processor cores.

Figure 7(a) shows the effects of three processor microarchitectures on the
time per element evaluation. The main conclusions drawn from the results
presented in this figure are the following: (1) the E5645 core spends on aver-
age 1.4 and 2.1 times more execution time per element evaluation than the
E5-2670 and E5-2690V4 cores, respectively; (2) global methods (Gl− . . .) al-
ways require more execution time per element evaluation than local methods
(Lo− . . .); (3) the configurations that employ the SD solver also spend more
time in each element evaluation than the configurations that use CG solver
if the rest of VrPA parameters are the same.

We have also investigated the causes of this variability in execution time
per element evaluation at the hardware level. Our programs were instru-
mented using the PAPI programming interface [19] and informative perfor-
mance counters of Intel cores [10]. In this investigation, we also used the
classic CPU performance equation that relates the execution time to instruc-
tion count, clock cycles-per-instruction (CPI) and clock rate [13],

tCPU = InstructionCount CPI

ClockRate
(5)

CPI is a performance metric that mainly depends on the hardware microar-
chitecture, instruction-set architecture, compiler and programming language
[13]. In our experiments, instruction-set architecture, compiler and program-
ming language remained the same.

Figures 7(b,c,d) show measurements of three performance metrics per ele-
ment evaluation for the Screwdriver mesh and VrPA configurations that meet
the TC2 convergence criterion. These metrics are: instruction count (retired
instructions), CPI and miss rate of the L1 data cache. The configurations have

16 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

been sorted by time per element evaluation from the smallest to the largest
numerical value. So, the correlation between time per element evaluation and
the measurements provided by the hardware counters can be perceived.

Fig. 7 Performance
metrics per mesh
element evaluation:

(a) execution
time

(b) total retired
instructions

(c) clock cycles
per instruction
(CPI)

(d) miss rate
of the Level-1
data cache

Mesh: Screwdriver

0.0
0.2
0.4
0.6
0.8
1.0
1.2

TI
M

E
PE

R
EL

EM
EN

T
EV

AL
UA

TI
ON

 [s
ec

]

1e 6

(a)cpu=E5645
cpu=E5-2670
cpu=E5-2690v4

1

2

3

4
RE

TI
RE

D
IN

ST
RU

CT
IO

NS

1e3

(b)

0.2
0.3
0.4
0.5
0.6
0.7

CL
OC

K
CY

CL
ES

PE
R

IN
ST

RU
CT

IO
N (c)

Lo-D1-TU-CG-TC2

Lo-log2-MQ-CG-TC2

Lo-D1-hS-CG-TC2

Lo-D2-hS-CG-TC2

Lo-D1-hS-SD-TC2

Lo-D2-hS-SD-TC2

Lo-inv-hS-CG-TC2

Lo-log2-MQ-SD-TC2

Lo-log1-hS-CG-TC2

Lo-inv-hS-SD-TC2

Lo-log1-hS-SD-TC2

Gl-D2-hS-CG-TC2

Gl-D1-hS-CG-TC2

Gl-log1-hS-CG-TC2

Gl-D1-hS-SD-TC2

Gl-D2-hS-SD-TC2

Gl-log1-hS-SD-TC2

Gl-inv-hS-CG-TC2

Gl-inv-hS-SD-TC2

VrPA CONFIGURATION

0.0%

0.2%

0.4%

0.6%

L1
 D

AT
A

CA
CH

E
M

IS
S

RA
TE

(d)

The main conclusions of the analysis of these performance metrics per el-
ement evaluation are: (1) longer time per element evaluation is frequently
caused by a larger number of retired instructions per evaluation when
the same microarchitecture is analyzed (see Figure 7(b)); note that global
methods (Gl− . . .) execute more instructions than local methods (Lo− . . .);
(2) when the same VrPA configuration is evaluated on the three processors,
the number of retired instructions per evaluation is approximately the same,
which is to be expected because we are using the same program, compiler and
instruction-set; (3) for each configuration, the CPI of the E5-2690V4 core is
always lower than the CPI of the E5-2670 core whose CPI is lower than the
CPI of the E5645 core (see Figure 7(c)); this is to be expected from newer
generations of microarchitectures given that fewer number of stall cycles per

Performance Comparison and Workload Analysis of VrPA Algorithms 17

instruction is frequently a hardware design goal for commodity processors;
(4) because of the ratio of clock rates of these three processors is lower than
1.08 and the instruction counts are similar, most of the performance advan-
tage comes from a much lower CPI for the newer processors; on average, the
ratio between the CPIs of E5-2670 and E5645 is 1.22, and the ratio between
the CPIs of E5-2690V4 and E5645 is 2.3; (5) global configurations always
cause larger miss rates of the L1 data cache than local configurations (see
Figure 7(d)), although the impact on the CPI is not very significant.

10 Conclusions
We have studied the performance and workload of vertex repositioning al-
gorithms (VrPA) for simultaneous mesh untangling and smoothing. The in-
fluence on performance and workload of a large number of VrPA based on
five parameters using triangle and tetrahedral meshes has been investigated.
Among the choices for possible VrPA parameters, two new objective function
formulations have been proposed. The largest worst mean-ratio quality met-
ric for each benchmark mesh was obtained using one of these formulations.
Additionally, a performance model for sequential VrPA algorithms has been
proposed. This model involves a new workload measure called number of mesh
element evaluations that is independent of the processor if numerical preci-
sion, compiler, and program are the same. We have shown that the execution
times of VrPA methods are more proportional to the number of element eval-
uations than mesh size or the number of objective function evaluations. The
other factor of the model, the time per element evaluation, is more affected
by the processor and objective function approach than the objective func-
tion formulation, the quality metric, numerical solver, convergence criteria
or mesh. The performance of VrPA methods has been compared using three
processor cores with different microarchitectures. Most of the advantage of
newer processors come from smaller values of the CPI performance metric.

This paper has also shown that the workload per vertex of a local opti-
mization algorithm is very unbalanced. Using this finding, we have devised a
new mesh partitioning approach [2]. Our study methodology may be applied
to meshes with elements that are different from triangles and tetrahedra.
For instance, some vertex repositioning methods improve the quality of hex-
meshes after solving an optimization problem [11, 14]. They employ iterative
solvers to minimize different objective functions composed of terms that mea-
sure the element qualities. However, the validity of our findings across these
other methods has to be examined.

Acknowledgement
This work has been supported by Spanish Government, "Secretaría de Es-
tado de Universidades e Investigación", "Ministerio de Economía y Compet-
itividad" and FEDER, grant contract: CTM2014-55014-C3-1-R. One of the

18 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

computers used in this work was provided by the "Instituto Tecnológico y
de Energías Renovables, S.A.". We thank to anonymous reviewers for their
valuable comments and suggestions on this manuscript.

References
1. K. Barker, N. Chrisochoides: Practical Performance Model for Optimizing Dynamic

Load Balancing of Adaptive Applications. In: Proc. 19th IPDPS, 28.a-28.b, 2005.
2. D. Benítez, J.M. Escobar, R. Montenegro, E. Rodríguez: Parallel Performance Model

for Vertex Repositioning Algorithms and Application to Mesh Partitioning. In: Proc.
27th Int. Meshing Roundtable, 2018.

3. M. Brewer, L. Diachin, P. Knupp, T. Leurent, D. Melander: The Mesquite Mesh
Quality Improvement Toolkit. In: Proc. 12th Int. Meshing Roundtab., 239-250, 2003.

4. S. Browne, J. Dongarra, N. Garner, K. London, P. Mucci: A Scalable Cross-Platform
Infrastructure for Application Performance Tuning Using Hardware Counters. In:
Proc. Supercomputing, Article 42, IEEE Comp. Soc., 2000.

5. Y. Che, L. Zhang, C. Xu, Y. Wang, W. Liu, Z. Wang: Optimization of a parallel
CFD code and its performance evaluation on Tianhe1A. Computing and Informatics,
33(6):1377-1399, 2015.

6. L. Diachin, P. Knupp, T. Munson, S. Shontz: A Comparison of Inexact Newton and
Coordinate Descent Mesh Optimization Techniques. In: Proc. 13th Int. Meshing
Roundtable, 243-254, 2004.

7. J.M. Escobar, E. Rodríguez, R. Montenegro, G. Montero, J.M. González-Yuste:
Simultaneous untangling and smoothing of tetrahedral meshes. Comp. Meth. Appl.
Mech. Eng., 192:2775-2787, 2003.

8. C. Geuzaine, J.F. Remacle: Gmsh: A three-dimensional finite element mesh gener-
ator with built-in pre- and post-processing facilities. Int. J. Numerical Methods in
Engineering, 79(11):1309-1331, 2009.

9. P. Knupp: Updating meshes on deforming domains: An application of the target-
matrix paradigm. Commun. Num. Method Eng., 24:467-476, 2007.

10. D. Levinthal: Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon
5500 Processors. Intel, 2014.

11. M. Livesu, A. Sheffer, N. Vining, M. Tarini: Practical hex-mesh optimization via
edge-cone rectification. ACM Trans. Graph., 34, 4, Article 141, 2015.

12. R. Montenegro, J.M. Cascón, J.M. Escobar, E. Rodríguez, G. Montero: An au-
tomatic strategy for adaptive tetrahedral mesh generation. Appl. Num. Math.,
59(9):2203-2217, 2009.

13. D.A. Patterson, J.L. Hennessy: Computer Organization and Design. The Hard-
ware/Software Interface. ARM edition. Morgan Kaufmann Publishers Inc., 2017.

14. E. Ruiz-Girones, X. Roca, J. Sarrate, R. Montenegro, J.M. Escobar: Simultaneous
untangling and smoothing of quadrilateral and hexahedral meshes using an object-
oriented framework. Advances in Engineering Software, 80, 12-24, 2015.

15. S.P. Sastry, S.M. Shontz: Performance characterization of nonlinear optimization
methods for mesh quality improvement. Eng. with Computers, 28:269-286, 2012.

16. S.P. Sastry, S.M. Shontz: A parallel log-barrier method for mesh quality improve-
ment and untangling. Eng. with Computers, 30(4):503-515, 2014.

17. S.P. Sastry, S.M. Shontz, S.A. Vavasis: A log-barrier method for mesh quality im-
provement and untangling. Eng. with Computers, 30(3):315-329, 2014.

18. R.B. Schnabel: Concurrent Function Evaluations in Local and Global Optimization.
CU-CS-345-86. Comp. Science Tech. Rep. 332. Univ. Colorado, Boulder, 1986.

19. D. Terpstra, H. Jagode, H. You, J. Dongarra: Collecting Performance Data with
PAPI-C. In: Tools for High Performance Computing 2009, Springer, 157-173, 2010.

20. C.S. Verman, K. Suresh: Towards FEA over tangled quads. Procedia Engineering,
82:187-199, 2014.

