
Parallel Performance Model for Vertex
Repositioning Algorithms and
Application to Mesh Partitioning

D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

Abstract Many mesh optimization applications are based on vertex reposi-
tioning algorithms (VrPA). Since the time required for VrPA programs may
be large and there is concurrency in processing mesh elements, parallelism
has been used to improve performance. In this paper, we propose a perfor-
mance model for parallel VrPA algorithms that are implemented on memory-
distributed computers. This model is validated on two parallel computers and
used in a quantitative analysis of performance scalability, load balancing and
synchronization and communication overheads. We show that load imbalance
and synchronization between boundary partitions are the major causes of the
parallel bottlenecks. In order to diminish load imbalance, a new approach to
mesh partitioning is proposed. This strategy reduces the imbalance in mesh
element evaluations caused by multilevel k-way partitioning algorithms and
consequently, improves the performance of parallel VrPA algorithms.

1 Introduction
There are several areas of research involving parallel processing of meshes. For
example, many mesh processing techniques have been developed to generate
meshes in parallel [5]. The sizes and shapes of generated elements affect the
efficiency and accuracy of computational applications. Thus, other parallel
algorithms are used for mesh optimization [8]. Additionally, parallel mesh
warping algorithms have been developed which employ optimization methods
for use in computational simulations with deforming domains [15].

A few performance models for parallel meshing algorithms have been de-
veloped. Such models can enable us to understand, fine-tune and predict the
performance of applications. Barker and Chrisochoides applied an analytical
model for load balancing to mesh generation asynchronous applications [1].
Sarje et al. used a performance model to propose a mesh partitioning that
improves the load balancing of an ocean modeling code [16]. Mathis and Ker-
byson presented a parametric model to predict the parallel performance of a
partial differential equation solver on unstructured meshes [13].

SIANI institute & DIS department, University of Las Palmas de Gran Canaria, Spain.

1

2 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

Vertex repositioning algorithms (VrPA) have been adopted by a vast ma-
jority of mesh optimization applications [6, 7, 8, 17, 18], but no performance
model for distributed-memory computers has been proposed yet. In another
paper, we have proposed a performance model for sequential VrPA algo-
rithms [2]. Using this model, we propose in this paper a performance model
for loosely synchronous algorithms executed on distributed-memory comput-
ers (Sections 4 and 5). The parallel model was applied to several VrPA al-
gorithms for mesh untangling and smoothing and the results in prediction
accuracy are shown in Section 6. Additionally, the parallel model is used in
Section 7 to study the performance scalability, load balancing and synchro-
nization and communication overheads of VrPA. Based on the parallel model
and the results of its validation, a new approach to mesh partitioning that
reduces load imbalance is proposed in Section 8. Before contributions are ex-
plained, the following two sections describe a generalized version of parallel
VrPA algorithms and implementation details.

2 Generalized parallel algorithm
VrPA algorithms have been used to untangle a mesh and/or improve its qual-
ity by moving the free vertices [8, 17, 18]. They can be posed as numerical
techniques in which the following parameters are considered [6]: objective
function approach (A) and formulation (f), element quality metric (q), mini-
mization method (NM) and convergence or termination criteria (TC). There
are many choices for each free parameter one could make in a study of VrPA
algorithms. In this paper, we limited the options to those shown in Table 1.
Each combination of choices will be called VrPA configuration and denoted:〈
A
〉
-
〈
f
〉
-
〈
q
〉
-
〈
NM

〉
-
〈
TC
〉
, for instance, “Lo-D2-hS-CG-TC2”.

Algorithm 1 shows a generalized VrPA for distributed-memory computers
that is similar to others [8, 17]. The input is a set of nC files with information
of vertices and elements of mesh partitions: Pi, i ∈ {1, . . . ,nC}. Every parti-
tion includes spatial coordinates of vertices and information of element edges.
A partitioning tool is used to obtain these files from the file with information
of a mesh, M .

The M mesh is frequently partitioned by assigning each vertex to one
partition [8, 17]. In this way, the number of send and receive messages between
parallel processes is minimized. Each partition is required to additionally
include information of all vertices of elements where at least one vertex is
assigned to that partition. The boundary of a partition is constituted by
shared elements, each of them is formed by vertices assigned to that partition
and at least to another partition.

In each mesh partition, vertices are classified as interior, non-ghost bound-
ary (or simply, boundary), ghost or fixed. Interior vertices form elements
whose all vertices belong to that partition. Boundary vertices form shared
elements where at least one vertex belongs to another partition. Ghost ver-
tices are these vertices that belong to other partitions. Thus, ghost vertices
are replicated in shared partitions.

Parallel Performance Model for VrPA Algorithms 3

Table 1: Free VrPA parameters and their choices that are considered in this paper.
Legend: RW denotes related work.

Parameter Options RW
Objective function

approach (A):

K =
∑n

i=1 f(qi)
n: total free elements*

Gl: All-vertex
(K: Global function) n=NM : free elements*

of mesh
[6]

Lo: Single-vertex
(K: Local function) n=Nv: free elements*

of local patch
[6]

Objective function
formulation: f(qi)

qi: quality of ith element
qmin =min(qi)i∈{1...n}

h(z) = 1
2

(
z+
√
z2 + 4δ2

)
δ,µ,τ = constants

D1: Distortion 1 f(qi) = q−1
i [4]

D2: Distortion 2 f(qi) = q−2
i

[4]

log1: Logarithmic
barrier 1

f(qi) = n−1q−1
min−

µ log(τ q−1
min− q

−1
i)

[2]

inv: Regularized barrier
f(qi) = q−1

i +
1

h
(
q−1

min
−q−1

i

) [2]

Element quality
metric: qi

Si: Jacobian matrix

|| ||F : Frobenius norm

hS: Regularized
mean ratio

h(z) = 1
2

(
z+
√
z2 + 4δ2

)
σi = determinant(Si)

qi = d [h(σi)]2/d∣∣∣∣Si∣∣∣∣2
F

triangle : d= 2, s= 3
tetrahedron : d= 3, s= 6
a,b,δ,λ= constants

[7]

Numerical minimiza-
tion method (NM)

CG: Conjugate Gradient Polack-Ribiere,
analytical derivatives [4]

SD: Steepest Descent Analytical derivatives [4]
Termination
criteria (TC)

Qi: mean-ratio quality
value of the ith element

Qmin =min(Qi)i∈{1...NM}

TC2 (optimum mesh)
Q: average mean-ratio

value of mesh
∆: maximum variation

between outer iterations

true= (Qmin > 0 and
∆Q< 10−3 and
∆Qmin < 10−3)

* Free element: mesh element with at least one free vertex.

Each partition is assigned to a different parallel process that optimizes in-
terior and boundary vertices but not ghost vertices. The numerical processing
is divided into three parallel phases. The first phase is implemented in lines
26 to 32. It is used only once to prepare the processing of vertices laying on
the partition boundaries in phase 3.

When a boundary vertex is being repositioned in phase 3, the numerical
method needs the coordinates of all connected vertices that should remain
fixed. Computational dependency appears between the adjacent boundary
and ghost vertices because one vertex begins to be processed after another
has been repositioned. Thus, vertices of shared elements cannot be optimized
in parallel.

BoundaryColoring divides the boundary of a partition (Pi) into nF in-
dependent sets (Iij), also called colors (line 28) [3]. After that, the order of
processing and interchange of boundary and ghost vertices is established. The
resulting orderings are interchanged among shared partitions (line 29).

4 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

Algorithm 1 - Parallel mesh vertex repositioning algorithm.
1: . Input: files with information of Pi partitions, Pi← Partition(M), i ∈ {1, . . . ,nC}
2: #define: approach (A), formulation (f), quality metric (q), numerical minimization method

(NM)
3: #define termination criteria: TC = LogicFunction(Qmin,∆Q,∆Qmin)
4: #define constants: τ = 10−6 (maximum or minimum increase of the objective function),
NmII = 150 (maximum number of inner iterations), NmOI = 100 (maximum number of
outer iterations)

5: Ne,i← 0 . element evaluations for partitions Pi, i ∈ {1, . . . ,nC}
6: procedure VertexRepositioning(W,X,n)
7: .Inputs : W (free vertices),X(their coordinates),n(number of elements)
8: . Initiation : K = 0, ∆K = 0, m = 0 (inner loop index)
9: while (∆K ≤ τ(minimizing) or ∆K ≥ τ(maximizing)) and m≤NmII do . Inner loop

10: X̂←X . Returned spatial coordinates (X̂) of vertices (W)
11: . Initiation : P ← 0 . Moving directions: P = {pv},v ∈W
12: for i = 1, . . . ,n do . n: number of free elements
13: for each free vertex v of ith free element do
14: pv += NM(f ′(qi),v) . f ′: derivatives used in NM
15: Ne + = 1 . Number of mesh element evaluations
16: X← X̂ + P . Tentative positions of free vertices
17: Kt← 0 . Initial value of objective function
18: for i = 1, . . . ,n do
19: Kt += f(qi) . MESH ELEMENT EVALUATION
20: Ne + = 1 . Number of mesh element evaluations
21: ∆K←Kt−K
22: K←Kt . Final value of objective function
23: m + = 1 . Number of inner iterations
24: return X̂ . Output: updated coordinates of free vertices
25: procedure main()
26: for Pi ∈M in parallel do . Parallel phase 1: begin
27: . Read the vertex and element information of Pi partition
28: Ii← BoundaryColoring(Pi) . Ii = {Iij}j∈{1..nFi},i∈{1..nC}

29: MPI_Send-MPI_Receive information of boundary/ghost vertices
30: . Store the order of partition free boundary/ghost vertices
31: Qmin,i← GlobalMeasures(Pi) . Initial partition quality
32: Synchronization MPI_Allreduce . Parallel phase 1: end
33: for Pi ∈M in parallel do
34: . Initiation : ∆Qi = 106, ∆Qmin,i = 106, ki = 0 (loop index)
35: while TC 6= true and ki ≤NmOI do . Mesh/Outer loop
36: if A = Gl then . Par. pha. 2 - Interior processing: begin
37: XV ← VertexRepositioning(V,XV ,NM)
38: else . A = Lo (single-vertex)
39: for each free interior vertex v ∈ Pi do
40: xv ← VertexRepositioning(v,xv,Nv)
41: Synchronization MPI_Barrier . Parallel phase 2: end
42: for each boundary independent-set Iij ∈ Pi do . Parallel phase 3: begin
43: for each free boundary vertex of partition v ∈ Iij do
44: xv ← VertexRepositioning(v,xv,Nv)
45: MPI_Send-MPI_Receive coordinates of vertices xv

46: Synchronization MPI_Barrier . All boundary vertices
47: (Qmin,i,∆Qi,∆Qmin,i)← GlobalMeasures(Pi)
48: ki + = 1 . Number of mesh/outer iterations
49: Synchronization MPI_Allreduce . Parallel phase 3: end
50: MPI_Send-MPI_Receive Ne,i

51: . Output: files with information of optimized Pi partitions

Parallel Performance Model for VrPA Algorithms 5

Finally, a list with the order of boundary and ghost vertices is created in
line 30. This list determines the order in which these vertices are optimized
in the parallel process, or received from other processes in phase 3. Interior
vertices do not need to be reordered because all adjacent vertices are assigned
to the same process. Using the function MPI_Allreduce at the end of phase1,
a synchronization barrier ensures that all partitions have completed these
steps before continuing computation (line 32).

Mainly, the algorithm spends most of the time in a variable number of con-
current partition sweeps (lines 35-50). In each partition sweep, also called
outer or mesh iteration, all interior and boundary vertices are optimized
separately in parallel phases 2 (lines 36. . . 41) and 3 (lines 42. . . 49), respec-
tively, adjusting the spatial coordinates of all free vertices (XV). The vertices
that lie on the mesh surface are treated as fixed and are not updated.

Interior vertices of every partition are not dependent on vertices of other
partitions and are sequentially optimized by the same parallel process. In
this way, the interior vertices of all partitions are optimized concurrently. A
single synchronization phase between partitions is established to ensure that
all interior vertices are completely repositioned (line 41).

For partition boundaries, some independent sets of free vertices from
different partitions (Iij) are optimized in parallel. After an independent
set has been optimized, the interchange of updated coordinates is imple-
mented using message send/receive functions (line 45). These computation-
synchronization-communication phases are repeated until all boundary ver-
tices have been optimized (lines 42. . . 45).

When all boundary vertices have been updated (line 46), the minimum
quality metrics of all partitions are calculated and distributed (line 47. . . 49)
and the partition sweep finishes. GlobalMeasures provides the average and
minimum mean-ratio quality metric of the mesh [6]. At this moment, a new
partition sweep may begin if convergence conditions are not met by every par-
tition (line 35). LogicFunction uses termination criteria (TC) to stop the al-
gorithm. The outer loop is iterated in Main procedure while LogicFunction
is not true. After a variable number of partition sweeps, the output of our
parallel algorithm provides optimized mesh partitions (line 51).

The most time-consuming operation is a sequential procedure called
V ertexRepositioning (lines 37, 40, 44), which moves free vertices (V) of an
input mesh partition (Pi). Thus, the parallel performance is based on the per-
formance of the underlying serial numerical method. V ertexRepositioning
iterates an inner loop while an extreme of the objective function (K) is be-
ing reached by using an optimization solver (NM). K is constructed with A,
f and q as it is shown in Table 1.

6 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

3 Experimental setup
Software framework. We developed programs for simultaneous mesh un-
tangling and smoothing that implement Algorithm 1. They include double-
precision floating-point data structures and functions from MPI and the
Mesquite C++ library [4], which is specialized in mesh smoothing. Mesquite
was extended to support hS quality metric, log1 and inv objective function
formulations and TC2 termination criteria (see Table 1). TC2 is met when
the output mesh has no inverted elements and is optimum, i.e., the minimum
and average values of the mean-ratio quality metric in two successive mesh
iterations do not change significantly. We used OpenMPI 1.6.5 and gcc 4.8.4
with -O2 flag on Linux systems. A pure sequential version was selected for
baseline runs. For each VrPA configuration, we repeated the execution of the
sequential and parallel programs several times, such that the 95% confidence
interval was lower than 1%.

Benchmark meshes. Algorithm 1 was applied on the unstructured,
fixed-sized meshes shown in Figure 1 whose characteristics are in Table 2.
The 2D mesh was obtained by using Gmsh tool [9], taking a square, meshing
with triangles and displacing selected nodes of the boundary. This type of
tangled mesh can be found in some problems with evolving domains [12]. All
3D meshes were obtained from a tool for adaptive tetrahedral mesh genera-
tion that tangles the mesh [14]. All the mesh sizes were always fixed, and we
used Metis 5.1.0 for mesh partitioning [11].

Platforms. Numerical experiments were conducted on two cluster com-
puters called Cluster1 and Cluster2 that are in two different locations.
Cluster1 is a Bull computer with 28 compute nodes that are organized in
7 BullxR424E2 servers. They are interconnected with Infiniband QDR 4X
(32 Gbit/s). Each node integrates two Intel Xeon E5645 (6 cores each, 2.4
GHz), and 48 GB of DDR3/1333. So, up to 336 cores were used in parallel.
The storage system is a RAID-5 disk array consisting of 7200 RPM SATA2
disk drives. All compute nodes share a common file system through NFS

Input meshes (unstructured, tangled, fixed-size)

Output optimized meshes using VrPA configuration: Gl-D1-hS-SD-TC2

(a) Square(2D) (b) Toroid(3D) (c) Screwdr.(3D) (d) Egypt(3D)

Fig. 1: Input and output meshes for four optimization problems solved with the same
VrPA algorithm.

Parallel Performance Model for VrPA Algorithms 7

Table 2: Characteristics of input meshes. All meshes have inverted elements: Qmin=0.

Mesh characteristic Square Toroid Screwdriver Egypt
Total vertices 3314499 9176 39617 1724456

Free vertices (they can be moved) 3309498 3992 21131 1616442
Fixed vertices (they are not moved) 5001 5184 18486 108014

Element type: triangle (2D), tetrahedron (3D) 2D 3D 3D 3D
Total free elements (NM) 6620936 35920 168834 10013858

Inverted/Tangled elements (%) 0.1% 38.2% 49.4% 46.2%
Average mean-ratio quality metric (Q) 0.95 0.17 0.13 0.23

Standard deviation of the mean-ratio metric 0.05 0.31 0.21 0.27

over a gigabit Ethernet LAN. Cluster2 is a Fujitsu computer that has the
same type of network, storage and file system as Cluster1 but only four com-
pute nodes (Primergy CX250) with 16 E5-2670@2.6GHz cores and 32 GB of
DDR3/1600 per node. We activated multiples of 12 or 16 cores to completely
occupy the compute nodes. During the experiments, the compute nodes were
not shared among other user-level workloads. Additionally, multithreading
and Turbo Boost were disabled.

4 Sequential performance model
In another paper, we have proposed a performance model for sequential VrPA
algorithms that tries to justify their execution times [2],

tSmodelCPU = α Ne (1)

with tSmodelCPU the execution time, Ne the number of mesh element evaluations
and α the model parameter that represents the time per element evalua-
tion. Equation 1 assumes that computation time is much larger than total
input/output time.
Ne takes into account multiple evaluations of an element quality metric

and its derivative (see lines 15 and 20 in Algorithm 1). Although not exactly
equal, Ne is similar to the concurrent function evaluation steps defined in
[19]. We have demonstrated that the execution time of VrPA algorithms is
more proportional to Ne than other workload measures such as mesh size or
objective function evaluations (see [2] for a more extended discussion). It is
important to note that Ne depends not only on the problem size but also on
the number of inner and outer iterations required to meet the convergence
criteria. However, Ne is independent of the computer hardware; it depends on
the algorithm and its implementation, the selected numerical accuracy of data
structures, and the method chosen by the compiler to implement arithmetic
operations. We use the number of element evaluations as workload measure
in the new parallel performance model that is presented below.

The other factor, the time per element evaluation (α), is more affected
by the processor and objective function approach than the objective function
formulation, the quality metric, numerical solver, convergence criteria or mesh
[2]. Thus, to precisely determine execution times with Equation 1, α must be
recalculated when the processor and algorithm configuration change.

8 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

In summary, this simple performance model determines that the time re-
quired by sequential VrPA algorithms to optimize a mesh is directly propor-
tional to the number of element evaluations.

5 Parallel performance model
In this section, we describe a new model to justify the parallel runtimes of
Algorithm 1 for a selected VrPA configuration on a determined distributed-
memory computer. This model uses the time per mesh element evaluation
(α), which is obtained from the sequential execution, denoted Sreal, of the
same configuration using a pure sequential version of Algorithm 1. Then,
selecting one VrPA configuration and employing Equation 1,

α =
tSrealCPU

Ne
(2)

We assume that this model parameter is constant for all parallel experiments
that use the same VrPA configuration, mesh and cluster computer.

Since there is an MPI barrier between the repositioning of interior and
partition boundary vertices (line 41), Equation 3 models the parallel execu-
tion time that is divided into two components, one for optimizing interior
vertices and the other for partition boundary vertices,

tPmodelCPU = tPmodelinterior + tPmodelboundary (3)

In this case, we have assumed that the execution time for the mesh partition-
ing phase and parallel phase 1 are negligible with respect to parallel phases
2 and 3. The parallel time for interior vertices is expressed as a sum,

tPmodelinterior = tPmodelscalable,interior + tPmodelimbalance,interior (4)

where the first term denotes the scalable interior parallelism. If the workload
was evenly distributed among nC partitions, the total workload for optimiz-
ing interior vertices in all partitions (NPmodel

e,interior) would be divided by nC,

tPmodelscalable,interior = α
NPmodel
e,interior

nC
(5)

The second component of Equation 4, called interior imbalance, measures
the additional time required by the most loaded partition when the workload
for processing interior vertices is not evenly distributed. It is given by Equa-
tion 6, where NPmodel

e,interior,max is the maximum number of interior element
evaluations of a partition,

tPmodelimbalance,interior = α
(
NPmodel
e,interior,max −

NPmodel
e,interior

nC

)
(6)

Parallel Performance Model for VrPA Algorithms 9

The values of NPmodel
e,interior and NPmodel

e,interior,max for Equations 5 and 6 are mea-
sured at the end of the parallel execution. The time needed to optimize all
partition boundary vertices has four terms,

tPmodelboundary = tPmodelscalable,boundary + tPmodelimbalance,boundary +

tPmodelsynchro,boundary + tPmodelcomm,boundary (7)

Scalable boundary parallelism (Equation 8) assumes that the workload of
boundary vertices (NPmodel

e,boundary) are evenly distributed among nC partitions.

tPmodelscalable,boundary = α
NPmodel
e,boundary

nC
(8)

Boundary imbalance (Equation 9) measures the additional time needed by
the most loaded partitions when workloads of the nF independent sets are
not evenly distributed,

tPmodelimbalance,boundary = α
(nF∑
j=1

NPmodel
e,boundary,j,max −

NPmodel
e,boundary

nC

)
(9)

where NPmodel
e,boundary,j,max is the maximum number of element evaluations of

the jth independent-set of a partition. NPmodel
e,boundary and the accumulated value

(
∑
NPmodel
e,boundary,j,max) in Equations 8 and 9 are obtained at the end of parallel

execution for a given number of partitions (nC).
Synchronization (Equation 10) assumes that all partitions cannot optimize

boundary vertices concurrently in phase 3. It is due to the vertex dependence
imposed by the processing and interchange order of boundary and ghost ver-
tices that is determined in phase 1. In this term of the model, the scalable
workload of boundary processing is factored with (nC−nC′)/nC′, where nC′
is the number of partitions that actually are optimizing vertices concurrently
in phase 3 (0 < nC′ ≤ nC). As fewer opportunities for parallelism are avail-
able in boundary phase, nC′ will reduce and the modeled effect causes an
increase in execution time. nC′ is obtained by averaging the number of par-
titions that finish a vertex reposition between another partition terminates
two consecutive repositioning of boundary vertices.

tPmodelsynchro,boundary =
α NPmodel

e,boundary

nC

nC−nC′

nC′
(10)

Equation 11 measures the MPI communication overhead of boundary pro-
cessing using a two-parameter model for SMP nodes working in the short
regime [10]. This equation has two terms times the number of outer iterations
(k). The first term represents the communication latency, which is modeled as
the network latency (LAT) times the number of data block communications
(2 β nF) during a single outer iteration. β denotes the total number of edges

10 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

of a new graph that represents which partitions share boundary elements. An
edge represents the boundary between two partitions. Neighboring partitions
are represented by adjacent vertices. An MPI communication is performed
through each edge of this graph after processing an independent set. nF de-
notes the average number of independent sets per partition that is obtained
in phase 1.

tPmodelcomm,boundary = k
(
LAT 2 β nF +

32 (γ−1) nVboundary
BW

)
(11)

The other term is data transmission time, where BW denotes the data
rate that each process can achieve in sending or receiving a message. The
effective rate is dependent on transmitted data size. However, we assume this
parameter is constant because the variability of message sizes is small and
computing time significantly exceeds communication time. Each vertex has
a data size of 32 bytes to send/receive spatial coordinates and global ID. γ
denotes the average number of partitions that share the same vertex, and
nVboundary the total number of free boundary vertices of all partitions. Us-
ing code instrumentation, we measured LAT and BW in each MPI process
and their average values were used to determine the parameters in our per-
formance model. The rest of parameters, β, γ and nVboundary, are obtained
from the partitions of the input mesh at the end of partitioning phase.

6 Validation of the parallel model

Algorithm 1 was applied to four mesh optimization problems using different
VrPA configurations but fixing the TC2 convergence criteria. TC2 is met
when the mesh is untangled and smoothed. In order to demonstrate the
applicability of our parallel model to a variety of VrPA configurations, a
different one was selected for each mesh. The values used for the α model
parameter were calculated with Equation 2 and are shown in Table 3.

Figures 2 and 3 depict results that were obtained from Clusters 1 and
2, respectively. The resulting execution times (tPrealCPU) are compared to the
predictions of our parallel model (tPmodelCPU). In these tests, the numbers of
partitions, MPI processes and CPU cores had the same value. We include
results obtained using partitions that activated all cores of different subsets
of compute nodes. Thus, each bar diagram shows execution times for numbers
of cores that are multiple of 12 (Cluster1) or 16 (Cluster2). For each mesh
optimization problem, note in Table 3 that the minimum qualities of output
meshes are similar.

On average, the mean relative errors of our parallel model in the estima-
tion of the times obtained from Cluster1 and Cluster2 were 0.027 and 0.031,
respectively. This discrepancy can be explained by the inaccuracy introduced
when nC′ and

∑
jN

Pmodel
e,boundary,j,max were obtained. Another source of inac-

curacy is introduced by α that may be slightly different between parallel and
sequential processing.

Parallel Performance Model for VrPA Algorithms 11

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

102

103

200

300

400
500
600
700
800
900

2000

3000

4000
5000
6000
7000

EX
EC

UT
IO

N
TI

M
E

[s
]

ratio:
1.00

ratio:
1.00

ratio:
1.00

ratio:
1.00

ratio:
1.00 ratio:

1.00
ratio:
1.01 ratio:

1.01
ratio:
0.99

Parallel experiments
Parallel performance model

(a) Square

12 24 48 96 192 216
NUMBER OF CORES

101

7

8

9

20

EX
EC

UT
IO

N
TI

M
E

[s
]

ratio:
1.01

ratio:
0.99

ratio:
0.98 ratio:

1.02
ratio:
1.03

ratio:
0.97

Parallel experiments
Parallel performance model

(b) Toroid

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

101

102

20

30

40
50
60
70
80
90

200

300

EX
EC

UT
IO

N
TI

M
E

[s
]

ratio:
0.98

ratio:
0.99

ratio:
1.02

ratio:
1.02

ratio:
0.98 ratio:

0.98 ratio:
1.03 ratio:

1.03
ratio:
1.03

Parallel experiments
Parallel performance model

(c) Screwdriver

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

102

103

30

40
50
60
70
80
90

200

300

400
500
600
700
800
900

EX
EC

UT
IO

N
TI

M
E

[s
]

ratio:
1.00

ratio:
1.00

ratio:
1.01

ratio:
0.99

ratio:
1.01

ratio:
0.99 ratio:

1.01
ratio:
0.99 ratio:

0.99

Parallel experiments
Parallel performance model

(d) Egypt
Fig. 2: Results of the parallel experiments and performance model using Cluster1. The
ratio of the performance model to experiment execution time is shown in blue. Table 3
shows the VrPA configurations that were applied and the average values of the minimum
mean-ratio quality metric of output meshes. Performance of the sequential executions
of respective configurations is also shown in Table 3.

Table 3: Performance of the baseline sequential experiments and average values of the
minimum mean-ratio quality metric (Qmin) of the output meshes of parallel experiments
whose results are shown in Figures 2 and 3. α denotes the time per mesh element
evaluation that was employed when the parallel model was applied.

Mesh VrPA
configuration

Sequential experiments Parallel experiments

CPU time [sec] α [µsec/element] Qmin

Cluster1 Cluster2 Cluster1 Cluster2 Cluster1 Cluster2

Square Lo-D2-hS-SD-TC2 5.8 104 5 104 0.5 0.4 0.633±0.001 0.633±0.001

Toroid Gl-inv-hS-SD-TC2 19.5 11.0 1.1 0.7 0.333±0.094 0.318±0.108

Screwdriver Gl-log1-hS-CG-TC2 1.6 103 1.0 103 0.8 0.6 0.255±0.002 0.256±0.001

Egypt Lo-D1-hS-SD-TC2 1.1 104 9.0 103 0.5 0.4 0.201±0.002 0.202±0.002

7 Parallel performance analysis

Figure 4 shows stacked column graphs for the times provided by our parallel
model when Cluster1 was used to run Algorithm 1. Every single column cor-
responds to a determined VrPA configuration, benchmark mesh and number

12 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

16 32 48 64
NUMBER OF CORES

103

700
800
900

2000

3000

EX
EC

UT
IO

N
TI

M
E

[s
] ratio:

1.00

ratio:
1.01

ratio:
1.01

ratio:
0.99

EXPERIMENTS
PARALLEL MODEL

(a) Square

16 32 48 64
NUMBER OF CORES

0

5

10

15

20

EX
EC

UT
IO

N
TI

M
E

[s
] ratio:

0.98

ratio:
1.03

ratio:
0.97

ratio:
1.04

EXPERIMENTS
PARALLEL MODEL

(b) Toroid

16 32 48 64
NUMBER OF CORES

0

50

100

EX
EC

UT
IO

N
TI

M
E

[s
] ratio:

1.02

ratio:
1.02

ratio:
1.02 ratio:

1.02

EXPERIMENTS
PARALLEL MODEL

(c) Screwdriver

16 32 48 64
NUMBER OF CORES

0

200

400

600

EX
EC

UT
IO

N
TI

M
E

[s
] ratio:

1.00

ratio:
1.00 ratio:

0.99 ratio:
1.01

EXPERIMENTS
PARALLEL MODEL

(d) Egypt

Fig. 3: Results of the parallel experiments and performance model using Cluster2 . The
ratio of the performance model to experiment execution time is shown in blue. Table 3
shows the VrPA configurations that were applied and the average values of the minimum
mean-ratio quality metric of output meshes. Performance of the sequential executions
of respective configurations is also shown in Table 3.

of partitions. It is divided into six sections, which are grouped into four cate-
gories: scalable parallelism, imbalance, synchronization and communication.

Scalable parallelism includes runtimes for optimizing interior and bound-
ary vertices if the sequential workloads were evenly distributed over all mesh
partitions (Equations 5 and 8). These times are represented in Figure 4 by
the two bottom columns denoted as Inter-Scaling and Boun-Scaling, respec-
tively.

As the number of partitions increases in strong scaling when a mesh is op-
timized, the time devoted to this category reduces. Equations 5 and 8 predict
that it is due to the fact that we are solving fixed-size problems and the ele-
ment evaluations in each partition reduce. Note in Figure 4 that the fraction
of time in scalable parallelism also reduces, which means that overheads are
more relevant. However, the fraction of time in boundary optimization tends
to increase because the ratio of boundary to interior element evaluations
increases when the number of partitions increases.

Another increasing trend is observed when problems of different sizes are
compared for a given number of cores. For example, using 324 cores in Clus-
ter1, note that the fraction of time in scalable parallelism is 25% for Screw-
driver mesh, 68% for Egypt mesh and 78% for the Square mesh. Since for 324

Parallel Performance Model for VrPA Algorithms 13

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

0.0

0.2

0.4

0.6

0.8

1.0

EX
EC

UT
IO

N
TI

M
E

(%
)

INTER-SCALING
BOUN-SCALING

INTER-IMBALANCE
BOUN-IMBALANCE

SYNCHRONIZATION
COMMUNICATION

(a) Mesh: Square, VrPA configuration:
Lo-D2-hS-SD-TC2

12 24 48 96 192 216
NUMBER OF CORES

0.0

0.2

0.4

0.6

0.8

1.0

EX
EC

UT
IO

N
TI

M
E

(%
)

INTER-SCALING
BOUN-SCALING

INTER-IMBALANCE
BOUN-IMBALANCE

SYNCHRONIZATION
COMMUNICATION

(b) Mesh: Toroid, VrPA configuration:
Gl-inv-hS-SD-TC2

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

0.0

0.2

0.4

0.6

0.8

1.0

EX
EC

UT
IO

N
TI

M
E

(%
)

INTER-SCALING
BOUN-SCALING

INTER-IMBALANCE
BOUN-IMBALANCE

SYNCHRONIZATION
COMMUNICATION

(c) Mesh: Screwdriver, VrPA
configuration: Gl-log1-hS-CG-TC2

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

0.0

0.2

0.4

0.6

0.8

1.0

EX
EC

UT
IO

N
TI

M
E

(%
)

INTER-SCALING
BOUN-SCALING

INTER-IMBALANCE
BOUN-IMBALANCE

SYNCHRONIZATION
COMMUNICATION

(d) Mesh: Egypt, VrPA configuration:
Lo-D1-hS-SD-TC2

Fig. 4: Time breakdowns provided by the parallel performance model for Cluster1.

cores Screwdriver requires fewer element evaluations than Egypt and Egypt
fewer element evaluations than Square (1.8 109, 2.5 1010, 1.1 1011, respec-
tively), the workload distributed among partitions is lower for Screwdriver
than for Egypt, which is lower than for Square. Thus, VrPA algorithms can-
not compensate for the parallel overheads when Screwdriver is optimized as
much as when Egypt or Square are optimized. In general, this performance
category is associated with parallel efficiency, which depends mainly on the
fraction of time occupied by mesh element evaluations perfectly balanced.

Load imbalance (Equations 6 and 9) is another category that includes
the execution times due to processor overload during vertex repositioning
when the element evaluations are not well balanced (see Inter-Imbalance and
Boun-Imbalance in Figure 4). Although the load imbalance cost decreases as
the number of partitions for a given problem increase because the elements
evaluations per partition decrease, its percentage relevance tends to be larger.
It is due to the less homogeneous distribution of workload that is assigned
by the mesh partitioning tool. Note that this tool distributes vertices and
elements among partitions but it does not know in advance how many mesh
elements evaluations will be completed. For our largest problems, Square and
Egypt, this overhead category is the major cause of the parallel bottlenecks.

14 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

For example, using 324 cores in Cluster1, load imbalance is responsible for
11% and 19% of the total runtime, respectively.

Synchronization (Equation 10) includes the overheads caused by the in-
dependent sets of partition boundary vertices that have to be processed in the
order determined in parallel phase 1. Note in Figure 4 that, as the number of
partitions (nC) increases, the percentage relevance of this category tends to
be larger in all of our optimization problems. It is due to the number of pro-
cesses that concurrently reposition partition boundary vertices (nC′), which
increases less than the number of partitions. This percentage relevance is also
affected by the increasing ratio of boundary to interior element evaluations,
which is larger as described above when the number of partitions increases.

Another effect of synchronization overhead can be observed when problems
of different sizes are compared for a given number of partitions. Taking any
number of partitions, the percentage relevance of this category is larger for
Toroid and Screwdriver than Square and Egypt. It is due to that nC′ tends
to reduce when the number of boundary element evaluations reduces. So, the
factor of our model (nC−nC′)/nC′ is larger. The modeled effect is concor-
dant with fewer opportunities for parallelism when the concurrent boundary
element evaluations reduce. Moreover, although the number of boundary el-
ements evaluations is smaller in Toroid and Screwdriver than Square and
Egypt for a given number of partitions, the ratio of boundary to interior ele-
ment evaluations is larger in Toroid and Screwdriver than Square and Egypt.
Thus, the percentage relevance of synchronization is also larger.

Communication is a category that considers the overhead caused by the
transmission of updated coordinates of partition boundary vertices (Equa-
tion 11). This overhead increases with the number of partitions because it
depends on the numbers of boundary vertices and independent sets. How-
ever, its percentage relevance is the lowest, from 1% to 2% when 336 cores
are used (see Figure 4). Therefore, VrPA algorithms do not suffer significantly
from the MPI communication overhead in our experiments. This is due to
the dependence of communication time on the numbers of partition bound-
ary vertices and independent sets, in contrast to the optimization time of
boundary vertices and other overhead categories that are dependent on the
concurrent mesh element evaluations.

8 Application to load balancing
Mesh optimization algorithms for distributed-memory computers use a pre-
vious phase of mesh partitioning to balance and distribute vertices among
parallel processes [17]. As stated in Section 3, we used a Metis program
(gpmetis) based on the multilevel k-way graph partitioning algorithm with
edge cut minimization [11]. This program requires as input a file storing a
mesh. Part of this file contains information relevant for vertices.

Parallel Performance Model for VrPA Algorithms 15

The results of previous section show that load imbalance is a significant
parallel overhead. To reduce this overhead, we propose to include in the input
file of the partitioning program a weight associated with each vertex. This
weight coincides with the number of element evaluations that are needed by
the vertex in a previous outer iteration of the parallel execution of the VrPA
algorithm. Thus, the first outer iteration is repeated twice, one for weight
calculation and the other for mesh optimization. Without vertex weights, the
partitioning program balances vertices. With our proposal, this program bal-
ances element evaluations, e.g., the sum of evaluations of the vertices assigned
to each parallel process is approximately the same across the partitions.

8.1 Hypothesis
Figure 5 shows the mesh element evaluations that were needed on average
in every outer iteration by each free vertex of Egypt mesh when Lo-D1-hS-
SD-TC2 configuration was used. Note that vertices are sorted by element
evaluations from largest to smallest. This figure shows that there is a large
range of workloads per vertex (black line). Given that the optimization of a
free vertex in the parallel algorithm is a serial process and using Equation 1
with constant α, this workload variability means that each vertex requires a
runtime that can range in a large interval.

Fig. 5: Element evaluations per
vertex and mesh iteration of
a VrPA algorithm (configura-
tion: Lo-D1-hS-SD-TC2) when
it was employed to untangle
and smooth the Egypt mesh
using one compute node of
Cluster1 and 16 mesh parti-
tions. Mesh vertices are sorted
by element evaluations from
largest to smallest.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
VERTEX ID 1e6

1

2

3

4

5

6

NU
M

BE
R

OF
 E

LE
M

EN
T

EV
AL

UA
TI

ON
S

PE
R

IT
ER

AT
IO

N 1e3
MEAN and STANDARD DEVIATION

Equations 5 and 8 show that the main workload of a partition (Pi) is
due to the element evaluations of all assigned vertices. Equations 6 and 9
show that load imbalance is caused by the difference in element evaluations
between the most loaded partition and the average partition. Thus, we might
expect that load balancing would improve when mesh partitioning uses the
sum of workloads assigned to partitions rather than the sum of vertices.

8.2 Mesh partitioning by workload decomposition

Our hypothesis was tested in a new experiment by comparing the perfor-
mance of parallel VrPA algorithms that use meshes partitioned both with

16 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

Fig. 6: Comparison
of mesh partitioning
strategies that bal-
ance either vertices
or mesh element
evaluations. MIN,
MEAN and MAX
denote the minimum,
mean and maximum
numbers of element
evaluations per mesh
partition, respec-
tively. The element
evaluations for each
number of partitions
were divided by the
mean value. Speedup
denotes the ratio of
execution times.

12 24 48 96 192 336
0.0

0.5

1.0

1.5

NO
RM

AL
IZ

ED
 E

VA
LU

AT
IO

NS

Balancing vertices, MIN
Balancing evaluations, MIN

Balancing vertices, MEAN
Balancing evaluations, MEAN

Balancing vertices, MAX
Balancing evaluations, MAX

12
0

20

40

60

TI
M

E
[s

ec
]

speedup:
 1.12X

24
0

10

20

30
speedup:
 1.11X

48
 NUMBER OF CORES

0

5

10

15

20
speedup:
 1.30X

Balancing vertices Balancing evaluations

96
0

5

10

15
speedup:
 1.90X

192
0

2

4

6

8
speedup:
 1.14X

336
0

2

4

6

8 speedup:
 1.16X

Mesh: Screwdriver. VrPA configuration: Lo-D1-hS-CG-TC2

12 24 48 96 192 336
0.0

0.5

1.0

NO
RM

AL
IZ

ED
 E

VA
LU

AT
IO

NS

Balancing vertices, MIN
Balancing evaluations, MIN

Balancing vertices, MEAN
Balancing evaluations, MEAN

Balancing vertices, MAX
Balancing evaluations, MAX

12
0

500

1000

TI
M

E
[s

ec
]

speedup:
 1.07X

24
0

200

400

600

speedup:
 1.22X

48
 NUMBER OF CORES

0

100

200

300
speedup:
 1.07X

Balancing vertices Balancing evaluations

96
0

50

100

150
speedup:
 1.10X

192
0

50

100

speedup:
 1.26X

336
0

20

40

60 speedup:
 1.02X

Mesh: Egypt. VrPA configuration: Lo-D1-hS-SD-TC2

and without workload information. The new proposal of mesh partitioning
needs to know the workload of every vertex. This information cannot be ob-
tained from the input mesh. Thus, a previous mesh iteration of the parallel
optimization is used to derive the weight that represents the workload of a
vertex. For this previous stage, the mesh is partitioned without workload in-
formation using gpmetis program. The second stage of our method consists
in repartitioning the input mesh, including the weights.

8.3 Results
The reduction in load imbalance is significant as can be seen in Figure 6.
This figure shows both the maximum and minimum numbers of element
evaluations per mesh partition normalized to the mean number of evaluations.

Parallel Performance Model for VrPA Algorithms 17

Consequently, the execution times decreased in this parallel experiment. Our
proposal achieved average speedups of 1.28X and 1.13X when Screwdriver
and Egypt meshes were optimized, respectively. The extra times of both the
previous mesh iteration and another mesh partitioning were added to the
evaluation of our proposal.

Performance improvement is not as high for Egypt mesh as it is for Screw-
driver mesh because the significance of load imbalance is smaller (see Fig-
ure 4). Thus, our mesh repartitioning strategy achieves larger performance
improvement when the relevance of load imbalance is greater.

Since the main cost of our proposal is the previous optimization stage,
larger benefits will be achieved when its execution time is much smaller than
the total time to convergence. A circumstance where our proposal has a
beneficial effect on performance occurs when the variance of the number
of elements evaluations per vertex in successive mesh iterations is low (see
Figure 5). In this case, a single mesh iteration is sufficient to derive the
relative workloads of vertices that are valid for the rest of the iterations.

9 Conclusions
We have proposed a performance model for vertex repositioning algorithms on
distributed-memory computers. This model is based on a workload measure
called number of mesh element evaluations. The parallel model has been
shown to be accurate with low average errors across a range of configura-
tions in terms of the number of parallel processes, processor microarchitec-
ture, mesh geometry, and algorithm configuration utilized. Furthermore, the
parallel model was used to quantitatively understand the performance scala-
bility, load balancing and synchronization and communication overheads. The
results in this paper have shown that imbalance in the number of element
evaluations and synchronization between boundary partitions are the major
causes of the parallel bottlenecks. Finally, we have proposed a new approach
to mesh partitioning that uses the number of mesh element evaluations to
distribute vertices among parallel processes. This mesh partitioning strat-
egy has been shown to reduce the imbalance in element evaluations caused
by multilevel k-way partitioning algorithms. Consequently, our mesh repar-
titioning proposal improves the parallel performance of VrPA algorithms. As
future work, we will study if performance improvement may be achieved using
our strategy in other known load balancing techniques. Additionally, we will
also investigate how to reduce the synchronization overhead of distributed-
memory algorithms for repositioning mesh vertices.

Acknowledgement
This work has been supported by Spanish Government, "Secretaría de Estado
de Universidades e Investigación", "Ministerio de Economía y Competitivi-
dad" and FEDER, grant contract: CTM2014-55014-C3-1-R. Cluster2 (Tei-

18 D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez

deHPC) was provided by the "Instituto Tecnológico y de Energías Renov-
ables, S.A.". We thank to anonymous reviewers for their valuable comments
and suggestions on this manuscript.

References

1. K. Barker, N. Chrisochoides: Practical Performance Model for Optimizing Dynamic
Load Balancing of Adaptive Applications. In: Proc. 19th IPDPS, 28.a-28.b, 2005.

2. D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez: Performance Comparison
and Workload Analysis of Mesh Untangling and Smoothing Algorithms. In: Proc.
27th International Meshing Roundtable, 2018.

3. D. Bozdag, A. Gebremedhin, F. Manne, E. Boman, U. Catalyurek: A framework
for scalable greedy coloring on distributed memory parallel computers. Journal of
Parallel and Distributed Computing, 68(4):515-535, 2008.

4. M. Brewer, L. Diachin, P. Knupp, T. Leurent, D. Melander: The Mesquite Mesh
Quality Improvement Toolkit. In. Proc. 12th International Meshing Roundtable,
239-250, 2003.

5. N. Chrisochoides: A Survey of Parallel Mesh Generation Methods. Tech. Rep. SC-
2005-09. Brown University, 2005.

6. L. Diachin, P. Knupp, T. Munson, S. Shontz: A Comparison of Inexact Newton and
Coordinate Descent Mesh Optimization Techniques. In: Proc. 13th International
Meshing Roundtable, 243-254, 2004.

7. J.M. Escobar, E. Rodríguez, R. Montenegro, G. Montero, J.M. González-
Yuste: Simultaneous untangling and smoothing of tetrahedral meshes.
Comp.Meth.Appl.Mech.Eng., 192, 2775-2787, 2003.

8. L. Freitag, M.T. Jones, P.E. Plassmann: A parallel algorithm for mesh smoothing.
SIAM J. Sci. Comput., 20(6):2023-2040, 1999.

9. C. Geuzaine and J.F. Remacle: Gmsh: A three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities. Int. J. Numerical Methods
in Engineering, 79(11):1309-1331, 2009.

10. W. Gropp, L. N. Olson, and P. Samfass: Modeling MPI Communication Performance
on SMP Nodes. In: Proc. 23rd European MPI Users Group Meeting, 2016.

11. G. Karypis: METIS (version 5.1.0) - A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes, and Computing Fill-reducing Orderings
of Sparse Matrices. Univ. of Minnesota, 2013.

12. P. Knupp: Updating meshes on deforming domains: An application of the target-
matrix paradigm. Commun. Num. Method Eng., 24:467-476, 2007.

13. M. Mathis, D. Kerbyson: A general performance model of structured and unstruc-
tured mesh particle transport computations. J. Supercomputing, 34:181-199, 2005.

14. R. Montenegro, J.M. Cascón, J.M. Escobar, E. Rodríguez, G. Montero: An au-
tomatic strategy for adaptive tetrahedral mesh generation. Appl. Num. Math.,
59(9):2203-2217, 2009.

15. T. Panitanarak, S.M. Shontz. A parallel log barrier-based mesh warping algorithm
for distributed memory machines. Engineering with Computers, (34):59-76, 2018.

16. A. Sarje, S. Song, D. Jacobsen, K. Huck, J. Hollingsworth, A. Malony, S. Williams, L.
Oliker: Parallel performance optimizations on unstructured mesh-based simulations.
Procedia Computer Science, 51:2016-2025, 2015.

17. S.P. Sastry, S.M. Shontz: A parallel log-barrier method for mesh quality improve-
ment and untangling. Engineering with Computers, 30(4):503-515, 2014.

18. S.P. Sastry, S.M. Shontz, S.A. Vavasis: A log-barrier method for mesh quality im-
provement and untangling. Engineering with Computers, 30(3):315-329, 2014.

19. R.B. Schnabel: Concurrent Function Evaluations in Local and Global Optimization.
CU-CS-345-86. Comp. Science Tech. Rep. 332. Univ. Colorado, Boulder, 1986.

