
A Quantum Algorithm for Minimising
the Effective Graph Resistance

upon Edge Addition

Finn de Ridder1(B), Niels Neumann2, Thijs Veugen2,3, and Robert Kooij4,5

1 Radboud University, Nijmegen, The Netherlands
f.deridder@alumnus.utwente.nl

2 TNO, The Hague, The Netherlands
{niels.neumann,thijs.veugen}@tno.nl
3 CWI, Amsterdam, The Netherlands

4 iTrust Centre for Research in Cyber Security,
Singapore University of Technology and Design, Singapore, Singapore

robert kooij@sutd.edu.sg
5 Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology, Delft, The Netherlands

Abstract. In this work, we consider the following problem: given a
graph, the addition of which single edge minimises the effective graph
resistance of the resulting (or, augmented) graph. A graph’s effective
graph resistance is inversely proportional to its robustness, which means
the graph augmentation problem is relevant to, in particular, applica-
tions involving the robustness and augmentation of complex networks.
On a classical computer, the best known algorithm for a graph with
N vertices has time complexity O(N5). We show that it is possible to
do better: Dürr and Høyer’s quantum algorithm solves the problem in
time O(N4). We conclude with a simulation of the algorithm and solve
ten small instances of the graph augmentation problem on the Quantum
Inspire quantum computing platform.

Keywords: Graph augmentation · Effective graph resistance ·
Dürr and Høyer’s algorithm · Quantum Inspire

1 Introduction

Our society depends on the proper functioning of several infrastructural net-
works, whose main function is to distribute flows of critical resources. Represen-
tative examples include electrical networks, distributing power through transmis-
sion links, and water networks, distributing water through pipe lines. The edges

Parts of this work are heavily based on the contents of De Ridder’s master’s thesis,
in particular, Sects. 2 and 4. Readers interested in a more extensive treatment of the
subject matter discussed in each of these sections are referred to the thesis available
at https://www.ru.nl/publish/pages/769526/z finn de ridder.pdf.

c© Springer Nature Switzerland AG 2019
S. Feld and C. Linnhoff-Popien (Eds.): QTOP 2019, LNCS 11413, pp. 63–73, 2019.
https://doi.org/10.1007/978-3-030-14082-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14082-3_6&domain=pdf
https://www.ru.nl/publish/pages/769526/z_finn_de_ridder.pdf
https://doi.org/10.1007/978-3-030-14082-3_6

64 F. de Ridder et al.

of these networks resist the passage of electric current and water molecules,
respectively, and their resistance is governed by well-established physical laws.
The physical characteristics of resistance in individual edges play a crucial role
in the robustness of the network as a whole [1,2,13]. For this reason, the effec-
tive graph resistance, a graph metric also referred to as Kirchhoff index, is often
used as a robustness indicator for complex networks (see [7]). The relationship
between this metric and robustness is negative: a lower effective graph resistance
indicates a more robust network.

Now suppose we can add a single edge to the network. Then the question that
naturally arises is: “The addition of which (single) edge maximises the robustness
of the augmented graph?” As robustness and the effective graph resistance are
inversely proportional, in terms of the latter the problem becomes the following:

Definition 1 (Graph Augmentation Problem). Given a graph G, the addi-
tion of which single edge e minimises RG+e, where RG+e denotes the effective
graph resistance of G augmented with e.

An exhaustive search for a solution takes time O(N5), where N is the number
of vertices in G [20]. The worst-case running time of an exhaustive search depends
on (i) the number of non-existing or candidate edges in G, on (ii) the worst-
case running time of the best known algorithm that outputs the effective graph
resistance of the graph it takes as input, and on (iii) the time it takes to find the
minimum value amongst the outcomes. The number of candidate edges is O(N2),
and the best known algorithms for computing the effective graph resistance take
time O(N3) to do so, finding the minimum is also O(N2) and accordingly, an
exhaustive search takes time O(N5).

There are different ways to compute the effective graph resistance of a graph.
Currently, the most efficient way is to first compute the eigenvalues of the Lapla-
cian of G, and make use of the fact that the effective graph resistance is equal to
the sum of the multiplicative inverses of the non-zero eigenvalues. That is, Van
Mieghem [16] has proven that

RG = N
N∑

k=2

1
λk

, (1)

where N is the number of vertices in G and λ2 ≤ . . . ≤ λN are the non-zero
eigenvalues of its Laplacian. The symmetric QR algorithm (see for example [9])
can be used to find the eigenvalues of the Laplacian and takes time O(N3).

In Sect. 4, we show that Dürr and Høyer’s quantum algorithm can solve our
problem in time O(N4). Note, however, that our application of their quantum
algorithm does not exploit graph-theoretic short cuts to outperform an exhaus-
tive search for a solution, but instead makes use of the intricacies of quantum
computation to arrive at a speed-up.

A part of Dürr and Høyer’s algorithm, the oracle, is application dependent.
To solve the graph augmentation problem, the oracle will need to compute the
effective graph resistance of certain graphs, and to do so efficiently it could use

A Quantum Algorithm for Minimising the Effective Graph Resistance 65

the symmetric QR algorithm—any algorithm for computing the effective graph
resistance in time at most O(N3) would work. Remember, however, that Dürr
and Høyer’s algorithm is a quantum algorithm, which means the oracle cannot
“just” be a classical implementation of the symmetric QR algorithm—more
details on the oracle will be given in Sect. 4.

Before we do so, we first discuss in Sect. 2 related works on the graph aug-
mentation problem and applications of quantum algorithms to graph theory.
Section 3 is a brief introduction to quantum computation and serves as a prepa-
ration for Sect. 4, which embodies our main contribution. Before we conclude in
Sect. 6, we discuss in Sect. 5 our simulation of the algorithm presented in Sect. 4.

2 Related Work

Ghosh et al. [8] have studied the problem of assigning weights to the edges
of a given graph G, such that RG is minimised. They also show that among
all graphs on N vertices, the graph for which the effective graph resistance is
maximal is the path graph PN , and that the complete graph KN has the smallest
effective graph resistance. A theorem by Deng [4] gives the minimum effective
graph resistance among all graphs G on N vertices that have k bridges; a bridge
of a not-necessarily-connected graph G is an edge whose removal increases the
number of components of G [11]. Van Mieghem [16] has shown that, if G is a
connected graph on N vertices, then

(N − 1)2

d̄
≤ RG, (2)

where d̄ denotes the average degree of the N vertices. The bound is tight, i.e.,
there exists a graph G for which RG = (N − 1)2/d̄, namely the complete graph
KN . Finally, Wang et al. [20] have proposed a handful of heuristics for the graph
augmentation problem and in [19], the problem is studied in the context of power
transmission grids.

Before we briefly discuss related works on applications of quantum algo-
rithms to graph theory, it is worthwhile to mention that, for a problem related
to the graph augmentation problem, namely that of maximising the algebraic
connectivity of the graph upon edge addition, a more efficient algorithm (than
exhaustive search) has been found already: Kim’s bisection algorithm [12] has a
time complexity of O(N3), which is better than an exhaustive search, which also
for this problem, takes time O(N5). Heuristics for the problem can be found in
the work by Wang and Van Mieghem [17].

Perhaps the second best-known quantum algorithm, after Shor’s algorithm, is
Grover’s algorithm [10]. In fact, Dürr and Høyer’s algorithm is a generalisation
of Grover’s. Grover’s algorithm searches an unsorted database, to find some
particular record, and has a query complexity of O(

√
n) where n is the number

of records in the database. A classical search, by contrast, requires exactly n
queries in the worst case. Grover’s algorithm achieves a quadratic speed-up.

66 F. de Ridder et al.

Based on Grover’s algorithm, Dürr et al. [5] formulated a quantum algorithm
that determines whether a graph on N vertices is connected, solving the problem
in time O(N

√
N), up to logarithmic factors. A classical computer requires time

of order N2, in the worst case. They also gave efficient algorithms for some other
graph-theoretic problems related to strong connectivity, minimum spanning trees
and shortest paths.

3 Quantum Computation

The following is a very short introduction to quantum computation. For a more
elaborate introduction to quantum computing we refer to the standard work on
the subject by Nielsen and Chuang [14].

Classical computing relies on bits to perform operations. By manipulating
bits, operations are performed and results obtained. Quantum computers in
principle do the same with quantum bits, or qubits. The state of a qubit |ψ〉
can be described by a vector

|ψ〉 = α0

(
1
0

)
+ α1

(
0
1

)
= α0|0〉 + α1|1〉,

with the last expression in the so-called ket-notation. The complex coefficients
α0 and α1 are called amplitudes and are subject to |α0|2 + |α1|2 = 1, to make
|ψ〉 a valid quantum state.

If both amplitudes are non-zero, |ψ〉 is said to be in a superposition of the
states |0〉 and |1〉. The combined state of two qubits |ψ1〉 and |ψ2〉 is |ψ1〉 ⊗
|ψ2〉, where ⊗ denotes the tensor product. Often however, it is not possible to
decompose a combined state into a tensor product. If such decomposition is not
possible, the qubits are said to be entangled.

There is an important difference between classical logic gates and quantum
gates: the latter need to be reversible. Accordingly, a quantum gate can be
described by a unitary operator. Analogous to classical computing, problems
can be solved on a quantum computer by applying the right quantum gates on
the right qubits in the right order.

4 The Algorithm

As mentioned before, Dürr and Høyer’s algorithm is based on a generalisation of
the well-known quantum search algorithm by Grover [10]. The generalisation was
formulated by Boyer et al. [3], two years after Grover made public his pioneering
research.

Given an unsorted database T , Dürr and Høyer’s algorithm is able to find
the index of the smallest entry in T . As one might expect, T will contain for
each candidate edge e of G (i.e., each edge that is not in G already) the effective
graph resistance RG+e of the augmented graph G+e. Accordingly, the algorithm
will return the index of the edge that we are looking for.

A Quantum Algorithm for Minimising the Effective Graph Resistance 67

This brings up the question: “How does the algorithm acquire T?” After
all, if T would be an argument of the algorithm, there would be no need to
use it: finding the minimum in an unsorted database, given the database, is
trivial and takes time proportional to the number of entries in the database.
The actual answer is a bit more involved, but at the same time exemplary of the
difference between quantum algorithms and algorithms that run on conventional
computers.

Conceptually, the algorithm constructs and queries T at runtime. To that
end, it is given a single argument known as the oracle: the oracle is a function
f which, given two valid indices (i, i′) of T , returns i, if T [i] < T [i′], and i′,
otherwise. The algorithm queries the database through the oracle. First, it will
choose uniformly at random an index ir and then “ask” the oracle whether there
exists another index i1 different from ir such that T [i1] < T [ir], and if so, to
return i1 (otherwise the oracle will simply return ir). In the unlikely event that
the oracle returns ir, the solution was found by a single guess and we are done.
If instead a different index i1 is returned, a new query is raised: “Does there
exist an index i2 such that T [i2] < T [i1]?” These steps are repeated until the
solution is found. Bear in mind, however, that the preceding is only a simplified
explanation of the algorithm, to give some intuition into its workings. The actual
specification is given in the following section.

4.1 Specification

As before, let T denote the unsorted database that we are searching through
and T [i] the entry at index i. The number of entries in T equals n. Dürr and
Høyer’s algorithm is shown in Fig. 1.

The algorithm outputs im with probability larger than 1/2 after at least⌈
8π

√
n
⌉

applications of the Grover iterate. Therefore, if the algorithm is run
c times, the probability that the minimum is among the results is at least
1 − (1/2)c, which converges rapidly to 1 as c increases. For example, after run-
ning the algorithm c = 8 times, the minimum is part of the outcomes with a
probability that is higher than 0.99.

4.2 Complexity Analysis

The loop described in step (3) should be interrupted only if, with probability at
least 1/2, it equals im. Accordingly, the running time of the algorithm is largely
dependent on how long it takes for the foregoing to hold.

We define X to be the time it takes until it := im. By Markov’s inequality,

P{X < 2E[X]} >
1
2

(4)

and therefore, if we interrupt the loop after running for time 2E[X], we know
P{it = im} is at least 1/2. The remainder of this section will be about computing
the expectation of X.

68 F. de Ridder et al.

Input. A quantum circuit Uf that implements the oracle f .
Output. With probability p > 1/2 , index im such that T [im] is the smallest entry in
the database.

1. Define λ to be 8/7 (see [3]).
2. Choose threshold index it ∈ Z, 0 ≤ it ≤ n − 1, uniformly at random.
3. Repeat the following until the cumulative sum of the number of applied Grover

iterates exceeds
⌊
8π

√
n
⌋
. Afterwards, go to (4.).

a. Use the generalisation of Grover’s algorithm by Boyer et al. [3] to search for
an index i such that T [i] < T [it]. That is,

i. Initialise s = 1.
ii. Initialise two n-qubit registers as

∑n−1
i=0

1√
n

|i〉 |it〉.
iii. Choose l ∈ Z, 0 ≤ l < s, uniformly at random.
iv. Apply the Grover iterate l times. The oracle f is implemented by Uf as

follows:

Uf : |i〉 |it →�〉
{

− |i〉 |it〉 if T [i] < T [it]
|i〉 |it〉 otherwise

. (3)

v. Measure the first register. Let i′t be the outcome. If
• T [i′t] < T [it] let it := i′t and return, i.e. go to (a.);
• otherwise let s := min (λs,

√
n) and go to (ii.).

4. Return it.

Fig. 1. Dürr and Høyer’s algorithm

In step (v) of Boyer et al.’s algorithm, it is changed if T [i′t] < T [it], after
which the algorithm returns. The algorithm is then run again, if the cumulative
sum of the number of applied Grover iterates does not yet equal l. For that
reason, each possible execution of Boyer et al.’s algorithm can be associated
with a distinct it: the threshold index just before the algorithm is executed.

In the worst case, i.e. if the running time of Dürr and Høyer’s algorithm is
maximal, the initial threshold index it0 , which is chosen uniformly at random in
step (2), is such that T [it0] is the largest value in T . In addition, every possible
execution of Boyer et al.’s algorithm is realised: at the end of each execution,
the threshold index it is changed to i′t such that T [i′t] is the largest entry in
the database smaller than T [it]. Necessarily, the number of times Boyer et al.’s
algorithm is executed equals n − 1.

Fortunately for us, it is unlikely that all n−1 possible executions are required.
Most will be skipped, automatically, simply because the result of Boyer et al.’s
algorithm is an index i′t such that T [i′t] is not only smaller than T [it], but also
smaller than a handful of different entries each of which is also smaller than
T [it], but that were just unlucky and have not been chosen. More than that, it
is impossible that, in the future, they are chosen.

The expectation of X is the sum of the expected running times of each
possible execution of Boyer et al.’s. That is, let Yk be a random variable defined
as the running time of the kth possible execution. We have,

A Quantum Algorithm for Minimising the Effective Graph Resistance 69

E[X] = E[Y1] + E[Y2] + · · · + E[Yn−1], (5)

where E[Yk] is pkLk: the product of the probability pk of execution k taking
place and the running time or length Lk of execution k, given it takes place,
respectively. Observe that the kth possible execution occurs directly after, and
at no other point in time, threshold index it becomes x such that T [x] is the kth
largest entry in T . As a result, pk is equal to the probability that it := x.

In the same paper in which they present their algorithm, Dürr and Høyer
prove by induction that pk = 1/r where 1 ≤ r ≤ n is the ranking of T [x], which
is 1 if the entry is minimal, and n if it is maximal (see Lemma 1 in [6]). Also,
note that r = n − k + 1. As a result, for example,

E[Yn−1] =
1
2
Ln−1, (6)

because the (n− 1)th execution, the last of all possible executions, occurs if and
only if during an earlier execution it := y, such that the ranking r of T [y] is 2,
which by Dürr and Høyer’s lemma happens with probability p = 1/r = 1/2.
We find that

E[X] =
1
n

L1 +
1

n − 1
L2 + · · · +

1
2
Ln−1, (7)

and are left with the assignment to find Lk.
The length Lk of a single execution is the sum of the lengths of steps (ii) and

(iv); steps (i), (iii), and (v) take a negligible amount of time and are, accordingly,
neglected in the complexity analysis. The duration of (ii) is the same for all
iterations: by convention, it is log2 n [6]. More difficult is the determination of
the duration of (iv), because it depends on k.

Boyer et al. show that the expected number of applications of the Grover
iterate, until their algorithm finds the minimum, is at most 8m0, where

m0 =
n

2
√

(n − t)t
. (8)

In (8), t is the number of solutions, which is known for each possible execution,
and allows us to find Lk:

Lk = 8m0B + log2 n =
4Bn√

(n − k)k
+ log2 n, (9)

where B is the complexity of a single query, i.e. the complexity of Uf . If n is
sufficiently large and

√
n + 1 ≈ √

n, it is possible to show that, consequently

E[X] ≤ 4πB
√

n + ln n log2 n. (10)

After time at least twice the upper bound of (10), i.e. after time 8πB
√

n +
1.39 log2

2 n we should stop executing Boyer et al.’s algorithm and move on to
step (4). That is, after at least

⌈
8π

√
n
⌉

applications of the Grover iterate, the
probability that it = im is at least 1/2. Accordingly, Dürr and Høyer’s algorithm

70 F. de Ridder et al.

runs in time O(B
√

n) where B is the time complexity of querying the oracle and
n the size of T . The size of T will be equal to the number of edges not in G and
therefore always smaller than N2.

What is B, the complexity of Uf? If we query the oracle as to whether
T [i] < T [it], it must first compute T [i] = RG+ei . As mentioned before, the
symmetric QR algorithm can be used to compute the eigenvalues of the Laplacian
Q of G + ei, which can then be used to compute RG+ei . Since any classical
algorithm can be implemented efficiently on a quantum computer using only
Toffoli gates [14], the time complexity B of the oracle is equal to the complexity
of the symmetric QR algorithm, which is O(N3). Hence, the complexity of Dürr
and Høyer’s algorithm, applied to the problem of minimising the effective graph
resistance of the augmented graph, becomes O(N4).

5 Simulation

The algorithm presented in Sect. 4 has been implemented on the quantum com-
puting platform Quantum Inspire [15], developed by QuTech. QuTech is an
advanced research centre in the Netherlands where the Technical University of
Delft and TNO collaborate together with industrial partners to build a quan-
tum computer and a quantum internet. The platform allows for simulations (of
quantum computers) of up to 31 qubits.

Programming using Quantum Inspire is possible both via a web interface and
via a software development kit (SDK). The SDK makes it possible to construct
hybrid quantum/classical algorithms and run quantum instructions from the
command line.

An (arbitrary) labelling of the candidate edges of the graph is needed to
implement the algorithm. The binary representation of these labels relates
directly to the states of the different qubits in the implementation. For example,
state |011〉 relates to label 3. With high probability, the algorithm outputs the
candidate edge whose addition minimises the effective graph resistance of the
augmented graph. The algorithm is iterative and hence has multiple passes and
multiple rounds of measurements.

An example of an implementation of the algorithm for only a single Grover
iteration is shown in Fig. 2, other iterations are similar. Note that the circuit
is subdivided in three parts. The first part, state preparation, creates an equal
superposition over all quantum states in the first register and sets the quantum
state to |it〉 in the second register.

In the second part, a phase-oracle is used to flip the amplitude of specific
quantum states. That is, the amplitude of quantum states of edges better than
it are flipped. A Toffoli-gate combined with two Hadamard-gates flips the ampli-
tude of the |111〉-state. Using X-gates before and after the controls of the Toffoli-
gate, amplitudes of other states are flipped, i.e. with X-gates the target has to be
in the |0〉-state for the amplitude to be flipped, without X-gates in the |1〉-state.
In the example in Fig. 2, the oracle flips the amplitudes of the states |110〉, |010〉,
and |101〉. The CNOT -gate with adjoining X- and Hadamard-gates is for the

A Quantum Algorithm for Minimising the Effective Graph Resistance 71

first two states, flipping the amplitude of | ·10〉. The amplitude of the |101〉-state
is flipped using the Toffoli-gate with adjoining X- and Hadamard-gates. In this
example, the edges labelled 2, 5, and 6 result in a lower effective graph resistance
than edge it = 3.

Fig. 2. The circuit implementation of the algorithm for it = 3. First, we have the state
preparation part, afterwards a phase-oracle is applied using Hadamard-, X-, CNOT -
and Toffoli-gates. Finally, amplitude amplification is applied and the first register is
measured.

The last part of the algorithm is amplitude amplification: amplifying the
amplitude of “good” states, while suppressing that of “bad” states. Note that the
shown implementation is a non-optimised circuit-implementation, as for instance
two Hadamard gates after each other do not change the quantum state.

We have tried the algorithm on ten small graphs, using only eight of the
available 31 qubits. The ten graphs, labelled G1, . . . , G10 as in Fig. 3, each con-
sist of seven vertices and ten edges in total and are obtained from [18]. In the
experiment we focused solely on the accuracy of the algorithm and not on the
observed running times—after all, we are only simulating execution.

For each of the ten graphs we evaluated the algorithm a hundred times to
test its accuracy and in each of the hundred runs, for each of the ten graphs, the
best edge to add was found. We also found that, at least for these graphs, the
upper bound on the number of iterations is a loose bound. For these graphs the
upper bound would be

⌈
8π

√
11

⌉
= 84, while logging information learned that

for all graphs and for all hundred runs, after at most ten iterations the best edge
was found already.

72 F. de Ridder et al.

Fig. 3. The ten graphs G1, . . . , G10 used to test the algorithm.

6 Conclusion

We have shown that the time complexity of Dürr and Høyer’s algorithm for
minimising the effective graph resistance is better than the time complexity of
an exhaustive search. This means that there exists a quantum circuit that solves
the optimisation problem and whose depth, compared to the depth of a classical
circuit implementing an exhaustive search, increases significantly less fast as
the number of vertices N increases. As a result, it is likely that, at least for
large instances, our algorithm running on a gate-based quantum computer will
outperform an exhaustive search on a classical computer.

Our simulation of the algorithm shows that indeed with high probability, the
best edge to add to the graph is found. In fact, in all runs, the solution was
found. Our implementation is easily extended to also support larger graphs by
increasing the number of qubits, adding extra controls to the controlled-NOT
and Toffoli-gates, and by adding X-gates to the oracle.

Finally, it is very likely that there exist many other optimisation problems, for
which also no clever algorithm has (yet) been formulated, and whose time com-
plexity can be improved upon as well. Simply by taking advantage of the quadratic
reduction of the time spent searching, provided by Dürr and Høyer’s algorithm.

References

1. Abbas, W., Egerstedt, M.: Robust graph topologies for networked systems. In:
IFAC Proceedings, vol. 45, no. 26, pp. 85–90, September 2012. https://doi.org/
10.3182/20120914-2-US-4030.00052, https://linkinghub.elsevier.com/retrieve/pii/
S147466701534814X

2. Asztalos, A., Sreenivasan, S., Szymanski, B., Korniss, G.: Distributed flow
optimization and cascading effects in weighted complex networks. Eur. Phys.
J. B 85(8) (2012). https://doi.org/10.1140/epjb/e2012-30122-3, http://www.
springerlink.com/index/10.1140/epjb/e2012-30122-3

3. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4–5), 493–505 (1998)

4. Deng, H.: On the minimum Kirchhoff index of graphs with a given number of
cut-edges. MATCH Commun. Math. Comput. Chem. 63, 171–180 (2010)

https://doi.org/10.3182/20120914-2-US-4030.00052
https://doi.org/10.3182/20120914-2-US-4030.00052
https://linkinghub.elsevier.com/retrieve/pii/S147466701534814X
https://linkinghub.elsevier.com/retrieve/pii/S147466701534814X
https://doi.org/10.1140/epjb/e2012-30122-3
http://www.springerlink.com/index/10.1140/epjb/e2012-30122-3
http://www.springerlink.com/index/10.1140/epjb/e2012-30122-3

A Quantum Algorithm for Minimising the Effective Graph Resistance 73

5. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of
some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006)

6. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum.
arXiv:quant-ph/9607014, July 1996. http://arxiv.org/abs/quant-ph/9607014

7. Ellens, W., Spieksma, F., Van Mieghem, P., Jamakovic, A., Kooij, R.: Effective
graph resistance. Linear Algebra Appl. 435(10), 2491–2506 (2011). https://
doi.org/10.1016/j.laa.2011.02.024, http://linkinghub.elsevier.com/retrieve/pii/
S0024379511001443

8. Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM
Rev. 50(1), 37–66 (2008). https://doi.org/10.1137/050645452, http://epubs.siam.
org/doi/10.1137/050645452

9. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences, 4th edn. The Johns Hopkins University Press, Baltimore
(2013)

10. Grover, L.K.: A fast quantum mechanical algorithm for database search, pp. 212–
219. ACM Press (1996). https://doi.org/10.1145/237814.237866, http://portal.
acm.org/citation.cfm?doid=237814.237866

11. Harary, F.: Graph Theory. Perseus Books, Cambridge (2001)
12. Kim, Y.: Bisection algorithm of increasing algebraic connectivity by adding an

edge. IEEE Trans. Autom. Control 55(1), 170–174 (2010). https://doi.org/10.
1109/TAC.2009.2033763, http://ieeexplore.ieee.org/document/5340588/

13. Koç, Y., Warnier, M., Mieghem, P.V., Kooij, R.E., Brazier, F.M.: The impact of
the topology on cascading failures in a power grid model. Physica A: Stat. Mech.
Appl. 402, 169–179 (2014). https://doi.org/10.1016/j.physa.2014.01.056, https://
linkinghub.elsevier.com/retrieve/pii/S0378437114000776

14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,
10th Anniversary edn. Cambridge University Press, Cambridge (2010)

15. QuTech: Quantum Inspire (2018). https://www.quantum-inspire.com/. Accessed
15 Nov 2018

16. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University
Press, Cambridge (2011)

17. Wang, H., Van Mieghem, P.: Algebraic connectivity optimization via link addi-
tion. In: Proceedings of the 3rd International Conference on Bio-Inspired Models of
Network, Information and Computing Sytems, BIONETICS 2008, pp. 22:1–22:8,
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), Brussels (2008). http://dl.acm.org/citation.cfm?id=1512504.
1512532

18. Wang, X., Feng, L., Kooij, R.E., Marzo, J.L.: Inconsistencies among spectral
robustness metrics. In: Proceedings of QSHINE 2018–14th EAI International Con-
ference on Heterogeneous Networking for Quality, Reliability, Security and Robust-
ness (2018)

19. Wang, X., Koç, Y., Kooij, R.E., Van Mieghem, P.: A network approach for power
grid robustness against cascading failures. In: 2015 7th International Workshop on
Reliable Networks Design and Modeling (RNDM), pp. 208–214. IEEE, Munich,
October 2015. https://doi.org/10.1109/RNDM.2015.7325231, http://ieeexplore.
ieee.org/document/7325231/

20. Wang, X., Pournaras, E., Kooij, R.E., Van Mieghem, P.: Improving robustness
of complex networks via the effective graph resistance. Eur. Phys. J. B 87(9)
(2014). https://doi.org/10.1140/epjb/e2014-50276-0, http://link.springer.com/10.
1140/epjb/e2014-50276-0

http://arxiv.org/abs/quant-ph/9607014
http://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1016/j.laa.2011.02.024
https://doi.org/10.1016/j.laa.2011.02.024
http://linkinghub.elsevier.com/retrieve/pii/S0024379511001443
http://linkinghub.elsevier.com/retrieve/pii/S0024379511001443
https://doi.org/10.1137/050645452
http://epubs.siam.org/doi/10.1137/050645452
http://epubs.siam.org/doi/10.1137/050645452
https://doi.org/10.1145/237814.237866
http://portal.acm.org/citation.cfm?doid=237814.237866
http://portal.acm.org/citation.cfm?doid=237814.237866
https://doi.org/10.1109/TAC.2009.2033763
https://doi.org/10.1109/TAC.2009.2033763
http://ieeexplore.ieee.org/document/5340588/
https://doi.org/10.1016/j.physa.2014.01.056
https://linkinghub.elsevier.com/retrieve/pii/S0378437114000776
https://linkinghub.elsevier.com/retrieve/pii/S0378437114000776
https://www.quantum-inspire.com/
http://dl.acm.org/citation.cfm?id=1512504.1512532
http://dl.acm.org/citation.cfm?id=1512504.1512532
https://doi.org/10.1109/RNDM.2015.7325231
http://ieeexplore.ieee.org/document/7325231/
http://ieeexplore.ieee.org/document/7325231/
https://doi.org/10.1140/epjb/e2014-50276-0
http://link.springer.com/10.1140/epjb/e2014-50276-0
http://link.springer.com/10.1140/epjb/e2014-50276-0

	A Quantum Algorithm for Minimising the Effective Graph Resistance upon Edge Addition
	1 Introduction
	2 Related Work
	3 Quantum Computation
	4 The Algorithm
	4.1 Specification
	4.2 Complexity Analysis

	5 Simulation
	6 Conclusion
	References

