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Abstract. Hierarchical image segmentation provides a region-oriented
scale-space, i.e., a set of image segmentations at different detail levels
in which the segmentations at finer levels are nested with respect to
those at coarser levels. Guimarães et al. proposed a hierarchical graph
based image segmentation (HGB) method based on the Felzenszwalb-
Huttenlocher dissimilarity. This HGB method computes, for each edge
of a graph, the minimum scale in a hierarchy at which two regions linked
by this edge should merge according to the dissimilarity. In order to
generalize this method, we first propose an algorithm to compute the
intervals which contain all the observation scales at which the associated
regions should merge. Then, following the current trend in mathematical
morphology to study criteria which are not increasing on a hierarchy, we
present various strategies to select a significant observation scale in these
intervals. We use the BSDS dataset to assess our observation scale selec-
tion methods. The experiments show that some of these strategies lead
to better segmentation results than the ones obtained with the original
HGB method.

1 Introduction

Hierarchical image segmentation provides a multi-scale approach to image anal-
ysis. Hierarchical image analysis was pioneered by [11] and has received a lot
of attention since then, as attested by the popularity of [1]. Mathematical mor-
phology has been used in hierarchical image analysis with, e.g., hierarchical
watersheds [3, 12], binary partition trees [14], quasi-flat zones hierarchies [10],
and tree-based shape spaces [17]. Other methods for hierarchical image analy-
sis consider regular and irregular pyramids [9], scale-set theory [7], multiscale
combinatorial grouping [13] and series of optimization problems [16].



2 Edward Cayllahua-Cahuina et al.

A hierarchical image segmentation is a series of image segmentations at
different detail levels where the segmentations at higher detail levels are pro-
duced by merging regions from segmentations at finer detail levels. Consequently,
the regions at finer detail levels are nested in regions at coarser levels. The
level of a segmentation in a hierarchy is also called an observation scale. In
[8], Guimarães et al. proposed a hierarchical graph based image segmentation
(HGB) method based on the Felzenszwalb-Huttenlocher dissimilarity measure.
The HGB method computes, for each edge of a graph, the minimum observa-
tion scale in a hierarchy at which two regions linked by this edge should merge
according to the dissimilarity.

In this article, we provide a formal definition of the criterion which is implic-
itly used in the HGB method. Then, we show that this criterion is not increasing
with respect to the observation scales. An important consequence of this obser-
vation is that selecting the minimum observation scale for which the criterion
holds true, as done with the original HGB method, is not the unique strategy
that makes sense with respect to practical needs. Hence, following a recent trend
of mathematical morphology (see, e.g., [17]) to study non-increasing criteria on
a hierarchy, we investigate scale selection strategies, leading to new variations of
the original HGB method. The proposed methods are assessed with the evalua-
tion framework of [1]. The assessment shows that some of the proposed variations
significantly outperform the original HGB method (see illustration in Fig. 1).

Fig. 1: Saliency maps resulting from the HGB method using the original obser-
vation scale (middle) and from one of our proposed observation scale (right).

Section 2 presents the basic notions for the HGB method. Section 3 discusses
the non-increasing property of the criterion used by the HGB method and in-
troduces an algorithm to find all the scales (associated to a given edge) which
satisfy the criterion. Section 4 presents a series of strategies to select different
observation scales based on this non-increasing criterion and Section 5 provide
the comparative analysis between the proposed strategies and the original HGB
method.
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2 Hierarchical graph-based image segmentation

This section aims at explaining the method of hierarchical graph-based image
segmentation (HGB) [8]. We first give a series of necessary notions such as quasi-
flat zones hierarchies [10], and then describe the HGB method.

2.1 Basic notions

Hierarchies Given a finite set V , a partition of V is a set P of nonempty
disjoint subsets of V whose union is V . Any element of P is called a region of P.
Given two partitions P and P′ of V , P′ is said to be a refinement of P, denoted
by P′ � P, if any region of P′ is included in a region of P. A hierarchy on V is
a sequence H = (P0, . . . ,P`) of partitions of V , such that Pi−1 � Pi, for any
i ∈ {1, . . . , `}.

Graph and connected-component partition A graph is a pair G = (V,E)
where V is a finite set and E is a subset of {{x, y} ⊆ V |x 6= y}. Each element
of V is called a vertex of G, and each element of E is called an edge of G. A
subgraph of G is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. If X is a graph,
its vertex and edge sets are denoted by V (X) and E(X), respectively.

If two vertices of a graph G are joined by an edge, we say that they are
adjacent. From the reflexive–transitive closure of this adjacency relation on a
finite set V (G), we derive the connectivity relation on V (X). It is an equivalence
relation, whose equivalence classes are called connected components of G. We
denote by C(G) the set of all connected components of G. Note that C(G) is a
partition of V (G), called the connected-component partition induced by G.

Quasi-flat zone hierarchies Given a graph G = (V,E), let w be a map from
E into the set R of real numbers. For any edge u of G, the value w(u) is called
the weight of u (for w), and the pair (G,w) is called an edge-weighted graph.
We now make from an edge-weighted graph a series of connected-component
partitions, which constitutes a hierarchy. Such a hierarchy is called a quasi-
flat zone hierarchy of (G,w) and the quasi-flat zone hierarchy transform is a
bijection between the hierarchies and a subset of the edge weighted graphs called
the saliency maps [4]. Hence, any edge-weighted graph induces a quasi-flat zone
hierarchy and any hierarchy H can be represented by an edge-weighted graph
whose quasi-flat zone hierarchy is precisely H [4]. This bijection allows us to
handle quasi-flat zone hierarchies through edge-weighted graphs.

Given an edge-weighted graph (G,w), let X be a subgraph of G and let
λ be a value of R. The λ-level edge set of X for w is defined by wλ(X) =
{u ∈ E(X) | w(u) < λ}, and the λ-level graph of X for w is defined as the
subgraph wVλ (X) of X such that wVλ (X) = (V (X), wλ(X)). Then, the connected-
component partition C(wVλ (X)) induced by wVλ (X) is called the λ-level partition
of X for w.
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As we consider only finite graphs and hierarchies, the set of considered level
values is reduced to a finite subset of R that is denoted by E in the remaining
parts of this article. In order to browse the values of this set and to round real
values to values of E, we define, for any λ ∈ R: pE (λ) = max{µ ∈ E∪{−∞} | µ <
λ}, nE (λ) = min{µ ∈ E∪{∞} | µ > λ} and n̂E (λ) = min{µ ∈ E∪{∞} | µ ≥ λ}.

Let (G,w) be an edge-weighted graph and let X be a subgraph of G. The
sequence of all λ-level partitions of X for w, ordered by increasing value of λ, is
a hierarchy, defined by QFZ(X,w) = (C(wVλ (X)) | λ ∈ E ∪ {∞}), and called
the quasi-flat zone hierarchy of X for w. Let H be the quasi-flat zone hierarchy
of G for w. Given a vertex x of G and a value λ in E, the region that contains
x in the λ-level partition of the graph G is denoted by Hλx.

Let us consider a minimum spanning tree T of (G,w). It has been shown
in [4] that QFZ(T,w) of T for w is the same as QFZ(G,w) of G for w. This
indicates that the quasi-flat zone hierarchy for G can be handled by its minimum
spanning tree.

2.2 Hierarchical graph-based segmentation method

In this article, we consider that the input is the edge-weighted graph (G,w)
representing an image, where the pixels correspond to the vertices of G and the
edges link adjacent pixels. The weight of each edge is given by a dissimilarity
measure between the linked pixels such as the absolute difference of intensity
between them.

Before explaining the HGB method, we first describe the following obser-
vation scale dissimilarity [8], which is required by the method and whose idea
originates from the region merging criterion proposed in [6].

Observation scale dissimilarity Let R1 and R2 be two adjacent regions,
the dissimilarity measure compares the so-called inter-component and within-
component differences [6]. The inter-component difference between R1 and R2

is defined by ∆inter(R1, R2) = min{w ({x, y}) |x ∈ R1, y ∈ R2, {x, y} ∈ E(T )},
while the within-component difference of a region R is defined by ∆intra(R) =
max{w ({x, y}) |x, y ∈ R, {x, y} ∈ E(T )}. It leads to the observation scale of R1

relative to R2, defined by SR2(R1) = (∆inter(R1, R2)−∆intra(R1)) |R1|, where
|R1| is the cardinality of R1. Then, a symmetric metric between R1 and R2,
called the observation scale dissimilarity between R1 and R2, is defined by

D(R1, R2) = max{SR2
(R1), SR1

(R2)}. (1)

This dissimilarity is used to determine if two regions should be merged or not
at a certain observation scale in the following.

HGB Method The HGB method [8] is presented in Method 1. The input is a
graph G representing an image with its associated weight function w, where the
minimum spanning tree T of G is taken. Given (T,w), the HGB method com-
putes a new weight function f which leads to a new hierarchy H = QFZ(T, f).
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Method 1: HGB method
Input : A minimum spanning tree T of an edge-weighted graph (G,w)
Output: A hierarchy H = QFZ(T, f)

1 for each u ∈ E(T ) do f(u) := max{λ ∈ E} ;
2 for each u ∈ E(T ) in non-decreasing order for w do
3 H := QFZ(T, f) ;
4 f(u) := pE (λ?H(u)) ;

5 end
6 H := QFZ(T, f) ;

The resulting hierarchy H is considered as the hierarchical image segmentations
of the initial image. Thus, the core of the method is the generation of the weight
function f for T .

After initializing all values of f to infinity (see Line 1), we compute an ob-
servation scale value f(u) for each edge u ∈ E(T ) in non-decreasing order with
respect to the original weight w (see Line 2). Note that each iteration in the
loop requires updating the hierarchy H = QFZ(T, f) (see Line 3). An efficient
algorithm for the hierarchy update can be found in [2]. Once H is updated, the
value λ?H(u) of a finite subset E of R is obtained by

λ?H({x, y}) = min
{
λ ∈ E | D

(
Hλx,Hλy

)
≤ λ

}
. (2)

We first consider the regions Hλx and Hλy at a level λ. Using the dissimilarity

measure D, we check if D
(
Hλx,Hλy

)
≤ λ. Equation (2) states that the observation

scale λ?H({x, y}) is the minimum value λ for which this assertion holds.

3 Observation scale intervals

3.1 Non-increasing observation criterion

In this section, we provide a formal definition of the observation criterion which is
involved in Equation (2). Then, we discuss its non-increasing behaviour opening
the doors towards new strategies to select interesting observation scale values
based on Felzenszwalb-Huttenlocher dissimilarity measure as used in Method 1.

In the remaining part of this section, we consider that H is any hierarchy
and that u = {x, y} is any edge of T .

Let λ be any element in E. We say that λ is a positive observation scale
(for (H, u)) whenever D(Hλx,Hλy ) ≤ λ. We denote by T the Boolean criterion
such that T (λ) is true if and only if λ is a positive observation scale. The crite-
rion T is called the observation criterion. Dually, if λ is not a positive observation
scale, then we say that λ is a negative observation scale (for (H, u)). If λ is a
negative observation scale, then we have D(Hλx,Hλy ) > λ.
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Observe that the value λ?H(x, y) defined in Equation (2) is simply the lowest

element of E such that T (λ) is true. Dually, we denote by λ
?

H(x, y), the largest
negative observation scale.

Intuitively, a positive observation scale corresponds to a level of the hierar-
chy H for which the two regions linked by u should be merged according to the
observation criterion T which is based on the dissimilarity measure D. On the
other hand, a negative observation scale corresponds to a level of the hierarchy
for which the two associated regions should remain disjoint. A desirable property
would be that the observation criterion T be increasing with respect to scales,
a Boolean criterion T being increasing whenever, for any scale value λ ∈ E,
T (λ) holds true implies that T (λ′) holds true for any scale λ′ greater than λ.
Indeed, in such desirable case, any level in E greater than λ?H(x, y) would be
a positive observation scale, whereas any level not greater than λ?H(x, y) would

be a negative scale. In other words, we would have λ?H(x, y) = nE

(
λ
?

H(x, y)
)

.

Hence, it would be easily argued that the observation scale of the edge u must
be set to λ?H(x, y). However, in general, the criterion T is not increasing (see a

counterexample in Fig. 2) and we have λ?H(x, y) < nE

(
λ
?

H(x, y)
)

. Therefore, it is

interesting to investigate strategies which can be adopted to select a significant
observation scale between λ?H(x, y) and λ

?

H(x, y) (see in Fig. 3 a graphical illus-
tration of different situations which may occur). In other words, the criterion T
is transformed into an increasing criterion T ′.

(G,w)

(G, f) H = QFZ(G, f)

Fig. 2: Counterexample for the increasing property of the observation crite-
rion T : for the edge u = {x, y} with x = f , y = g, we have D(H1

x,H1
y) =

17, D(H23
x ,H23

y ) = 17, and D(H25
x ,H25

y ) = 28. Hence, we have T (1) =
false, T (23) = true, and T (25) = false, which proves that T is not increasing.

In the framework of mathematical morphology, non-increasing regional at-
tributes/criteria are known to be useful but difficult to handle. Several rules
or strategies to handle non-increasing criteria have been considered in the con-
text of connected filters. Among them, one may cite the min- and max-rules
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Fig. 3: Illustration of possible observation scale selection strategies. The positive
observation intervals are represented in gray. On the left, the min-, the lower α-
length and the lower p-rank selection strategies select the scales λ1, λ2 and λ3,
respectively (for a value of α which is a little larger than the leftmost gray interval
and for p = 0.3), whereas, on the right, the max-, the upper α-length and the
upper p-rank selection strategies select the scales λ4, λ5 and λ6, respectively.

[15] or the Vitterbi [15] and the shape-space filtering [17] strategies. Note that
the strategy adopted in Equation (2) corresponds to the min-rule and that the

strategy consisting of selecting λ
?

H(x, y) corresponds to the max-rule. Our main
goal in this article is to investigate other strategies to efficiently handle the non-
increasing observation criterion T in the context of hierarchical segmentation
and edge-observation scale selection based on the Felzenszwalb-Huttenlocher re-
gion dissimilarity measure. Before presenting our proposed selection strategies,
we first define positive and negative observation intervals together with an algo-
rithm to compute them.

3.2 Algorithm for computing observation intervals

Let λ1 and λ2 be any two real numbers in E ∪ {−∞} such that λ1 < λ2. We
denote by Kλ1, λ2KE the subset of E that contains every element of E that is both
greater than λ1 and not greater than λ2: Kλ1, λ2KE = {λ ∈ E | λ1 < λ ≤ λ2}. We
say that a subset I of E is an open-closed interval of E, or simply an interval, if
there exist two real values λ1 and λ2 in E such that I is equal to Kλ1, λ2KE.

Definition 1 (observation interval) Let H be any hierarchy, let u be any
edge in E(T ), and let I be an interval. We say that I is a positive observation
interval (resp. a negative observation interval) for (H, u) if the two following
statements hold true:

1. any element in I is a positive (resp. negative) observation scale for (H, u);
and

2. I is maximal among all intervals for which statement (1) holds true, i.e., any
interval which is a proper superset of I contains a negative (resp. positive)
observation scale for (H, u).
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The set of all positive (resp. negative) observation intervals is denoted by ΛH(u)
(resp. by ΛH(u)) .

In order to compute ΛH({x, y}), we follow the strategy presented in [2], which
relies on the component tree of the hierarchy H. The component tree of H is the
pair TH = (N , parent) such that N is the set of all regions of H and such that
a region R1 in N is a parent of a region R2 in N whenever R1 is a minimal
(for inclusion relation) proper superset of R2. Note that every region in N has
exactly one parent, except the region V which has no parent and is called the
root of the component tree of H. Any region which is not the parent of another
one is called a leaf of the tree. It can be observed that any singleton of V is a
leaf of TH and that conversely any leaf of TH is a singleton of V . The level of a
region R in H is the highest index of a partition that contains R in H. Then, the
proposed algorithm, whose precise description is given in Algorithm 1, browses
in increasing order the levels of the regions containing x and y until finding
a value λ such that D(Hλx,Hλy ) ≤ λ. This value is then λ?H(x, y) defined by
Equation (2). This value is also the lower bound of the first positive observation
interval. If we keep browsing the levels of the regions containing x and y in
this tree, as long as D(Hλx,Hλy ) ≤ λ, we can identify the upper bound of this
first positive observation interval. We can further continue to browse the levels
of the regions containing x and y in the tree in order to identify all positive
observation intervals. Therefore, at the end of the execution, we can return the
set ΛH({x, y}) of all positive observation intervals. From the set ΛH({x, y}), we
can obtain by duality the set ΛH({x, y}) of all negative observation intervals.

The time complexity of Algorithm 1 depends linearly on the number of re-
gions in the branches of the component tree of H containing x and y since it con-
sists of browsing all these regions from the leaves to the root. In the worst case,
at every level of the hierarchy the region containing x is merged with a singleton
region. Hence, as there are |V | vertices in G, in this case, the branch of x con-
tains |V | regions. Thus, the worst-case time complexity of Algorithm 1 is O(|V |).
However, in many practical cases, the component tree of H is well balanced and
each region of H results from the merging of two regions of (approximately) the
same size. Then, if the tree is balanced, the branch of x contains O(log2(|V |))
nodes and the time-complexity of Algorithm 1 reduces to O(log2(|V |)).

4 Selecting observation scales

Let K be any subset of E. We consider the two following selection rules from K
to set the value of f(u) in Method 1:

min-rule: f(u) := min{k ∈ K}; and

max-rule: f(u) := max{k ∈ K}.

When K is the set of the positive observation scales, the result obtained with the
min-rule is called the min-selection strategy. Note that the results obtained with
the min-selection strategy correspond exactly to the results obtained with the
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Algorithm 1: Positive observation intervals

Input : The component tree T = (N , parent) of a hierarchy H, an
edge u = {x, y} of T , an array level that stores the level of
every region of H

Output: A set containing all elements of ΛH({x, y})
1 Cx := {x}; Cy := {y}; ΛH({x, y}) = {};
2 λ := min(level[Cx], level[Cy]); λprev := −∞;
3 do
4 while D (Cx, Cy) > λ do
5 λprev := λ ;
6 λ := min(level[parent[Cx]], level[parent[Cy]]);
7 if level[parent[Cx]] = λ then Cx := parent[Cx];
8 if level[parent[Cy]] = λ then Cy := parent[Cy];

9 end

10 λlower := max(nE (λprev) , n̂E
(
D(Hλx,Hλy )

)
);

11 while D (Cx, Cy) ≤ λ and (parent[Cx] 6= root and
parent[Cy] 6= root) do

12 λprev := λ;
13 λ := min(level[parent[Cx]], level[parent[Cy]]);
14 if level[parent[Cx]] = λ then Cx := parent[Cx];
15 if level[parent[Cy]] = λ then Cy := parent[Cy];

16 end
17 λupper := max(nE (λprev) , n̂E (λprev));
18 ΛH({x, y}).add(Kλlower, λupperK);
19 while parent[Cx] 6= root and parent[Cy] 6= root;

method presented in [8, 2], as described by Equation (2). In this article, we also
consider the max-selection strategy, that is the result obtained with the max-
rule when K is the set of the negative observation scales. Furthermore, we also
apply these rules to filtered sets of positive and of negative observation scales.
The motivation for introducing these strategies is to regularise the observation
criterion with respect to scales in order to cope with situations such as the ones
shown in Fig. 3. As filterings, we investigate the well-known rank and area filters.

Let us first provide a precise definition of the rank filters that we apply to the
positive and to the negative observation scales. The intuitive idea of the selection
strategies based on these filters is to remove a lower percentile of the positive
observation scales, which is then considered as non significant, before applying
the min-rule and to remove an upper percentile of the negative observation scales
before applying the max-rule.

Let K be any subset of E with n elements. Let k be any positive integer
less than n. We denote by rankk/n(K) the element e of K such that there are
exactly k distinct elements in K which are less than e. Let p be any real value
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between 0 and 1, we set rankp(K) = rankbp.nc/n(K), where bp.nc is the largest
integer which is not greater than the real value p.n.

Let p be any real value between 0 and 1. A p-positive observation scale
for (H, u) is any positive observation scale for (H, u) that is greater than rankp(K)

where K is the set of all positive observation scales not greater than λ
?

H(x, y). A
p-negative observation scale for (H, u) is any negative observation scale for (H, u)
that is less than rank1−p(K) where K is the set of all negative observation scales
not greater than λ?H(x, y). The min-rule from the set of all p-positive observation
scales is called the lower p-rank selection strategy while the max-rule from the set
of all p-negative observation scales is called the upper p-rank selection strategy.

Let us now describe the selection strategies obtained by applying an area filter
on the positive and on the negative observations scales before applying the min-
and max-rules. Let H be any hierarchy, let {x, y} be any edge of G and let α be
any positive integer. We set ΛαH({x, y}) = {Kλ1, λ2KE ∈ ΛH({x, y}) | λ2−λ1 ≥ α}
and Λ

α

H({x, y}) = {Kλ1, λ2KE ∈ ΛH({x, y}) | λ2−λ1 ≥ α}. The min-rule from the
set ∪ΛαH({x, y}) and the max-rule from the set ∪ΛαH({x, y}) are called the lower
α-length selection strategy and the upper α-length selection strategy, respectively.

The six selection strategies introduced in this section are illustrated in Fig. 3.

5 Experiments

In this section we aim to compare the segmentation results obtained from the
original HGB method against the segmentations obtained by our strategies. To
this end, we use the Berkeley Segmentation Dataset (BSDS) and associated
evaluation framework [1] for our experiments. This dataset consists of 500 natural
images of size 321×481 pixels. In order to perform a quantitative analysis, we use
the F-measures defined from the precision-recall for regions Fr. The segmentation
is perfect when Fr = 1 and totally different from the ground-truth when Fr = 0.
Each image is represented by a graph where the vertices are the pixels, where the
edges are given by the 4-adjacency relation, and where the weight of any edge
is given by the Euclidean distance between the colors of the pixels linked by
this edge. We compute for each image a set of segmentations at different scales.
From each pair made of an image segmentation and the associated ground truth,
we obtain one F -measure value. Then, we keep the best Fr-measure obtained
for each image of the database. Alternatively, we can also keep the Fr-measure
for a constant scale over the database, such that the constant scale is chosen
to maximize the average Fr-measure of the overall database. They are called
optimal image scale (OIS) and optimal database scale (ODS) respectively.

In Table 1, we see the average Fr scores for ODS and OIS on the BSDS
dataset. As we can observe, we obtain much better segmentation results from
the selection strategies that use max-rule over the selection strategies using min-
rule. Furthermore, among the selection strategies that use max-rule, the upper
p-rank selection shows a slight improvement over the max selection. We also
show in Fig. 4 the distribution of the best Fr scores for our strategies. In Fig. 1,
we can see a qualitative comparison between the saliency maps resulting from
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the HGB method using the min selection strategy over our upper p-rank strategy
which shows a significant improvement.

Table 1: Average Fr scores for BSDS dataset. In the table, avg., param. and
med. stands for average, parameter, and median, respectively.

Strategy Param.
ODS OIS

avg. med. avg. med.
Min - 0.463 0.453 0.570 0.555

Lower
p-rank

0.005 0.432 0.431 0.551 0.546
0.01 0.432 0.431 0.551 0.544
0.05 0.431 0.427 0.552 0.547
0.1 0.431 0.426 0.543 0.531

Lower
α−length

10 0.465 0.450 0.563 0.564
100 0.439 0.430 0.552 0.537
500 0.420 0.416 0.546 0.536

Strategy Param.
ODS OIS

avg. med. avg. med.
Max - 0.547 0.543 0.638 0.642

Upper
p-rank

0.005 0.552 0.553 0.646 0.649
0.01 0.553 0.541 0.647 0.648
0.05 0.553 0.541 0.643 0.637
0.1 0.548 0.541 0.641 0.637

Upper
α−length

10 0.548 0.545 0.638 0.640
100 0.547 0.545 0.638 0.638
500 0.546 0.543 0.640 0.643
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Fig. 4: Distribution Fr scores for ODS and OIS on the BSDS dataset, respectively.

6 Conclusions

In this article, we study the HGB method with the aim of proposing new strate-
gies for selecting an observation scale that can lead to better segmentation re-
sults. To this end, we propose an algorithm that computes all the scales for
which the Felzenswalb-Huttenlocher dissimilarity measure indicates that the re-
gions should merge. Dually, we are able to obtain based on the min- and max-rule
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selection with filtering techniques the negative intervals. Then, we propose sev-
eral strategies to select scales at both positive and negative intervals. We validate
the performance of our strategies on the BSDS dataset. The best performance
was achieved by our upper p-rank strategy (see Table 1).

As future work, we plan to use other gradients to weight the edges of the
graph. This along with our proposed strategies can lead to better segmentation
results, as we can observe in Fig. 5.

Fig. 5: Saliency maps resulting from the HGB method with upper p-rank selec-
tion strategy using as edge weights Euclidean distance (middle) and the struc-
tured edge detector from [5] (right).
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