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Abstract. In this paper, we consider the task of discovering the common
objects in a set of images. Initially, object candidates are generated in
each image and an undirected weighted graph is constructed over all
the candidates. Each candidate serves as a node in the graph while the
weight of the edge describes the similarity between the corresponding
pair of candidates. The problem is then expressed as a search for the
Maximum Weight Clique (MWC) in this graph. The MWC corresponds
to a set of object candidates sharing maximal mutual similarity, and
each node in the MWC represents a discovered common object class
across the images. Since the problem of finding MWCs is NP-hard, the
research of the MWC problem focuses on developing various heuristics for
finding good cliques within a reasonable time limit. We utilize a recently
very popular class of heuristics called local search methods. They search
for MWCs directly in the discrete domain of the solution space. The
proposed approach is evaluated on the PASCAL VOC image dataset
and the YouTube-Objects video dataset, and it demonstrates superior
performance over recent state-of-the-art approaches.

Keywords: Common Object Discovery · Visual Similarity · Maximum
Weight Clique · Local Search Algorithm

1 Introduction

We focus on the task of common object discovery, which aims at discovering the
objects of the same class in an image collection. Co-localizing objects in uncon-
strained environment is challenging. For images in the real-world applications,
such as those in the PASCAL datasets [8, 9], the objects of the same class may
look very different due to viewpoint, occlusion, deformation, illumination, etc.
Also, there could be considerable diversities within certain object class such as
human beings, for their differences in gender, age, costume, hair style or even
skin color. Besides, there could be multiple common objects in the given set of
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images, thus the definition of “common” may be ambiguous. For example, for
the first two images in Fig. 1, the common object class could be either human
or bicycle. In addition, the efficiency of the involved method is very significant
in time sensitive applications such as object co-localization in large collections
of images or video streams.

Fig. 1. Given a set of object candidates generated from an image collection (left), our
goal is to find common objects by searching for the maximum weight clique in the
associated graph. Each node in the clique (right) corresponds to a discovered common
object.

To achieve robust and efficient object co-localization, we formulate the task
as a Maximum Weight Clique (MWC) problem. It aims at finding a group of
objects that are most similar to each other, which corresponds to a MWC in the
associated graph. The nodes in the graph correspond to the object candidates
generated from the given image collection, while the weight on an edge indicates
how similar two given candidates are. We can discover a set of common objects
by finding the MWC in the associated graph. Each node in the MWC is a
discovered common object across the images. Figure 1 illustrates the idea.

For an undirected weighted graph G = (V,E), where V is the set of vertices
and E is the set of edges, a clique C is a subset of vertices in V and each pair
of vertices in C is connected by an edge in E. The Maximum Weight Clique
(MWC) problem is to find a clique C which maximizes

w(C) =
∑
vi∈C

wV (vi) +
∑

vi,vj∈C
wE(vi, vj), (1)

where wV : V → R and wE : E → R are the weight functions for the vertices
and edges respectively. Successfully solving the MWC problem has various ap-
plications not only in computer vision [17, 12] but in many different domains
from wireless to social networks [21, 19].

The main contributions of our paper include:

1. We address the task of object co-localization as a well-defined MWC prob-
lem in the associated graph. It provides a practical and general solution for
research and applications related to the MWC problem.

2. We develop a hashing based mechanism to detect the revisiting of the local
optimum in the local search based MWC solver [36]. It can alleviate the
cycling issue in the optimization process.
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3. The Region Proposal Network (RPN) [24] is applied for efficiently generating
the object candidates. The candidates are then re-ranked to improve the
robustness against the background noise.

4. A Triplet Network (TN) is learned to obtain the feature embeddings of the
object candidates, so as to construct a reliable affinity measure between the
candidates.

5. The performance is evaluated on the PASCAL VOC 2007 image dataset
[8] and the YouTube-Objects video dataset [13]. Superior performance is
obtained compared to recent state-of-the-art methods.

2 Related Works

The problem of common object discovery has been investigated extensively in
the past few years. Papazoglou et al [20] view the task as a foreground ob-
ject mining problem, where optical flow is used to estimate object motion and
the Gausssian mixture model is utilized to capture the appearance of the fore-
ground and background. Cho et al [6] tackle the problem using a part-based
region matching method, where a probabilistic Hough transform is used to eval-
uate the quality of each candidate correspondence. Joulin et al [12] extend the
method in [6] to co-localize objects in video frames, and a Frank-Wolfe algo-
rithm is used to optimize the proposed quadratic programming problem. In [35],
Edge Box [39] is employed to generate the object candidates. The common ob-
ject discovery problem is then addressed under the Multiple Instance Learning
(MIL) framework. Rochan et al [26] present a method for transferring existing
appearance models to unseen objects and apply it to localize common objects
in images and videos. Zhang et al [38] apply a part-based object detector and
a motion aware region detector to generate object candidates. The problem is
then formulated as a joint assignment problem and the solution is refined by in-
ferring shape likelihoods afterwards. Bilen et al [3] extract deep neural network
features upon Selective Search [31] windows and use Latent SVM (LSVM) to
discover the common objects. Kwak et al [14] also focus on the problem of lo-
calizing dominant objects in videos, where an iterative process of detection and
tracking is applied. Li et al [15] devise an entropy-based objective function to
learn a common object detector, and they address the task with a Conditional
Random Field (CRF) model. Wang et al [34] focus on segmenting common ob-
jects in videos, and they aim at minimizing the cost of assigning labels to the
super-pixels in each frame. Wei et al [37] perform Principal Component Anal-
ysis (PCA) on the convolutional feature maps of all the images, and locate the
most correlated regions across the images. Wang et al [32] use segmentations
produced by Fully Convolutional Networks (FCN) as object candidates. Then
they discover common objects by solving a N -Partite Graph Matching problem.

Many of these methods explicitly or implicitly employ graph based models
to interpret the task of object co-localization. Compared to these methods, we
apply different problem formulations, focus on different visual primitives, utilize
different appearance models, and adopt different metrics to evaluate the con-
sistency of the common objects. In this paper, an undirected weighted graph is



4 C. Rao et al.

first constructed over the given set of images, modeling the visual affinities be-
tween the object candidates. We find common objects as the Maximum Weight
Clique (MWC) in this graph, where each node in the clique corresponds to a de-
tected common object across the images. The MWC problem is NP-hard and it
is difficult to obtain a global optimal solution, thus often relaxation methods are
applied so that problem can be solved in the continuous domain [17]. In this pa-
per, we focus on the MWC solvers in the discrete domain to tackle the problem.
Generally, there are two types of algorithms that work directly in the discrete
domain to solve the MWC problem: methods based on global optimization [2,
11] and those based on local search [23, 18, 36]. While the global optimization
methods guarantee an optimal solution, they do not scale up to real problems
on large graphs. In contrast, the local search methods often yield solutions close
to global optimum on real graphs.

3 Problem formulation

Given a set of N images I = {I1, I2, . . . , IN}, we generate a set of possible
object candidates from all images B = {b | b ∈ P(I), I ∈ I}, where P(I) is
the set of object candidates extracted from image I and b is a bounding box of
that object candidate. Suppose ni object candidates are extracted from image
Ii, then a total number of |B| =

∑N
i=1 ni candidates will be generated from the

image collection I. We denote n = |B| in the remainder of the paper. Let o(bi)
be the probability of some bounding box bi containing the common object, and
let s(bi, bj) represent the similarity between two object candidates in bi and bj ,
then the task of object co-localization can be formulated as finding an optimal
subset B∗ ⊂ B such that

w(B∗) =
∑

bi∈B∗
o(bi) +

∑
bi,bj∈B∗,bi 6=bj

s(bi, bj) (2)

is maximized, with the constraint that at most one object candidate can be
selected from each image.

Further, we assign a label xi ∈ {0, 1} to each object candidate bi, and xi = 1
means that the object candidate bi is selected in the subset B∗. Thus, an indicator
vector x ∈ {0, 1}n is used to identify the common objects discovered in B.
Besides, an affinity matrix A ∈ Rn×n is constructed, where

Aii = o(bi), ∀bi ∈ B, and Aij = s(bi, bj), ∀bi, bj ∈ B. (3)

Here we assume the similarity metric s(bi, bj) is symmetric and non-negative,
namely Aij = Aji ≥ 0. On the other hand, we remove the edge between object
candidates bi and bj if they are present in the same image, hence they cannot
be simultaneously selected in B∗. Then the problem in (2) can be expressed as
finding an optimal indicator vector x ∈ {0, 1}n, such that xTAx is maximized.
Hence the selected nodes in B∗ correspond to a MWC in the constructed graph,
and they represent the discovered set of common objects. To summarize, the
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overall objective function of the MWC problem can be written in the matrix
form as

x∗ = argmax
x

xTAx, s. t. x ∈ {0, 1}n. (4)

To this end, the task of object co-localization is formulated as a Maximum
Weight Clique (MWC) problem as described in (1).

4 Graph Construction

4.1 Object candidates generation

The nodes in the associated graph correspond to the object candidates in all
the images. We expect those candidates to cover as many foreground objects as
possible. Meanwhile, the total number of candidates will also influence the search
space for the MWC. Therefore, our first priority is to find a proper method to
extract the object candidates. The Region Proposal Networks (RPN) [24] is used
in our approach to generate rectangular object candidates from each image. We
use the raw RPN proposals in the intermediate stage and apply Non-Maximum
Suppression (NMS) [27] to remove redundant boxes. We choose the top-K scoring
proposals from each image to construct the associated graph for computational
efficiency. We consider two different proposal scoring measures. The first one is
commonly used and is based on RPN objectness score of each object candidate.
RPN also generates a vector of class likelihoods for each object candidate, we
propose to re-rank the object candidates according to the entropy of the class
distribution. The entropy is low only if the class distribution is very different
from uniform, namely when just a few class probabilities are high while the
others are low. Thus small entropy values in this setting serve a similar purpose
as the objectness score but tend to be more accurate. Hence we can re-rank the
raw RPN proposals according to the entropy, and select the top-K scoring boxes
as object candidates in each image.

4.2 Common object likelihood

For object co-localization, the underlying class of the common object is not
known in advance. Thus, the object prior o(b) is difficult to estimate. A possible
way is to set the object prior as the objectness score of b. But this can be
problematic when b contains an object but not the common one. Thus, it may
lead to unexpected results if the objectness score is directly used, as observed
in [30]. Therefore, we set the contribution of the unary term to the objective
function (2) to zero, i.e.,

Aii = o(bi) = 0,∀bi ∈ B.

In the case of object co-localization, this means we focus on an undirected graph
with edge weight only. However, our formulation and MWC problem solver can
be applied to other tasks where both vertex weights and edge weights are present.
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4.3 Object representation and similarity

The edge weights in the associated graph represent visual similarity between
the selected object candidates. Thus, we need an accurate way to represent the
object candidates and evaluate their similarities. In this paper, we employ the
Triplet Network framework to learn deep feature embeddings of the object can-
didates. Suppose a pre-trained Convolutional Neural Network (CNN) is selected
to extract the deep features f(b;w) for each object candidate b ∈ B, where w
is the set of parameters of the CNN. In this framework, a set of triplets is then
constructed for fine-tuning the parameters w. Each triplet consists of a refer-
ence object br, a positive object bp and a negative object bn. Namely, br and
bp represent a pair of similar objects, while br and bn are a pair of dissimilar
objects. Two objects are viewed as similar if they belong to the same category
and otherwise dissimilar. Then, the hinge loss of a triplet is defined as

l(br, bp, bn) = max{0, λ+ s(br, bn)− s(br, bp)}, (5)

where λ is a margin threshold controlling how different s(br, bn) and s(br, bp)
should be. The goal of the Triplet Network learning is to find a set of optimal
parameters w, such that the sum of the hinge loss of all triplets

L(T ) =
∑

(br,bp,bn)∈T

l(br, bp, bn) (6)

is minimized over a training set of triplets T . Namely, in the specified metric
space, the learning process makes similar objects closer to each other, while dis-
similar objects are pushed away. In the triplet hinge loss l(br, bp, bn), frequently
used similarity metrics include dot-product (the linear kernel) and the Euclidean
distance. But the output ranges of these metrics are not bounded, and this may
invalidate the margin threshold λ in the loss function, as observed in [5]. In addi-
tion, more complex metrics can be also used here, such as the polynomial kernel
and the Gaussian kernel (the RBF kernel). But there are a few more parameters
in these kernel functions and they have to be chosen wisely. For simplicity, we
define s(bi, bj) as the cosine similarity between two CNN feature vectors f(bi;w)
and f(bj ;w), namely

Aij = s(bi, bj) =
f(bi;w)T f(bj ;w)

‖f(bi;w)‖‖f(bj ;w)‖
, (7)

since the metric is already neatly bounded and parameter free. The parameters
w in the overall loss function (6) can be updated via the standard Stochastic
Gradient Descent (SGD) method. The goal of this process is to learn a feature
embedding such that similar objects are closer to each other in the metric space
while dissimilar objects are pushed away.

5 The MWC problem solver

We use a local search based method to solve the MWC problem (4). The local
search usually moves from one clique to another until it reaches the cutoff, then
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the best clique found in the procedure is kept as the solution. The pipeline of
our MWC solver is summarized in Algorithm 1.

Compared to RSL and RRWL in [10], our algorithm starts from a random
single-vertex clique, while they generate a random maximal clique. This is par-
ticularly useful when the run-time is restricted. Besides, while RSL and RRWL
restart when a solution is revisited in the so-called first growing step, our algo-
rithm simply restarts when a local optimum is revisited. In this way, the solver
will spend less time on searching the local area that has been visited intensively.

5.1 Detecting Revisiting via A Hash Function

In recent methods, the local search typically moves in a deterministic way, i.e.,
no randomness exists in this process. Thus, a sequence of steps from a previously
visited local optimum would be simply repeated, and it may not improve the
best clique found so far. Hence, we improve this kind of methods by introducing
a cycle elimination based restart strategy, where a hash table is used to approx-
imately detect the revisiting of a local optimum. Given a candidate solution B∗c
and a prime number p, we define the hash value of B∗c as

hash(B∗c ) = (
∑

bi∈B∗c

2i) mod p, (8)

where i ∈ {1, 2, . . . , n} is the index of bi in the entire object candidate set B. If p
is large enough, the chance of collision is negligible. The parameter p can be set
according to the memory capacity of the machine. In the proposed algorithm,
the revisiting of a local optimum is detected by checking whether the respective
hash entry has been visited. If the local optimum was not visited before, the
local search continues. Otherwise, the solver will be restarted and try to look for
a better solution.

5.2 Scoring Functions and Candidate Nodes

Given an undirected weighted graph G = (V,E), we describe our approach
to finding the MWC in Algorithm 1. To begin with, we first introduce some
notations used in our algorithm. In the local search for the MWC, the add

operation adds a new node to the current clique C. The drop operation drops
an existing node from the current clique C. The swap operation swaps two nodes
from inside and outside the current clique C. Each operation returns a new clique
as the current solution, which maximizes the gain of the clique weight. Suppose
w(C) is the weight of a clique C defined in Eq. (1), then for the add and drop

operation, the gain of adding and dropping a node v is computed as

score(v, C) =

{
w(C ∪ {v})− w(C) if v 6∈ C;

w(C\{v})− w(C) if v ∈ C.
(9)

For swap operation, the gain of clique weight when swapping two nodes (u, v) is

score(u, v, C) = w(C\{u} ∪ {v})− w(C), u ∈ C, v 6∈ C, (u, v) 6∈ E. (10)
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We denote the set of neighbors of a vertex v as N (v) = {u|(u, v) ∈ E}. To
ensure that the local search always maintains a clique, we define two operand
sets as below. Firstly for a clique C, we define the set of candidate nodes for the
add operation as

Sadd(C) =

{
{v|v 6∈ C, v ∈ N (u),∀u ∈ C} if |C| > 0;

∅, otherwise.

Secondly, the set of candidate node pairs for the swap operation is defined as

Sswap(C) =

{
{(u, v)|u ∈ C, v 6∈ C, (u, v) 6∈ E, v ∈ N (w),∀w ∈ C\{u}} if |C| > 1;

∅, otherwise.

To maximize the gain of clique weight in each step, the add operation adds a
node v∗ to the current clique C such that

v∗ = argmax
v

score(v, C), v ∈ Sadd(C).

The drop operation drops a node

v∗ = argmax
v

score(v, C), v ∈ C,

from the current clique C. The swap operation swaps two nodes (u∗, v∗) such
that

(u∗, v∗) = argmax
(u,v)

score(u, v, C), (u, v) ∈ Sswap(C).

5.3 The Strong Configuration Checking Strategy

On the other hand, we apply the Strong Configuration Checking (SCC) strategy
[36] to avoid revisiting a solution too early. The main idea of the SCC strategy
works as follows. After a vertex v is dropped or swapped from a clique C, it can
be added or swapped back into C only if one of its neighbors is added into C.
Suppose confChange(v) is an indicator function of node v, where confChange(v)
= 1 means v is allowed to be added or swapped into the candidate solution
and confChange(v) = 0 means v is forbidden to be added or swapped into the
candidate solution, then the SCC strategy specifies the following rules:

1. Initially confChange(v) is set to 1 for each vertex v;

2. When v is added, confChange(u) is set to 1 for all u ∈ N (v);

3. When v is dropped, confChange(v) is set to 0;

4. When (u, v) ∈ Sswap(C) are swapped, confChange(u) is set to 0.
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Algorithm 1: Our MWC Problem Solver

Input : An undirected weighted graph G = (V,E) and a time limit t
Output: A clique C∗ with the maximum clique weight

1 C∗ ← C ← ∅; lastStepImproved← true;
2 step← 1; confChange(v)← 1,∀v ∈ V ;
3 while elapsed time < t do
4 if C = ∅ then add a random vertex into C;
5 v ← argmaxv score(v, C), v ∈ Sadd(C), s.t. confChange(v) = 1;
6 (u, u′)← argmax(u,u′) score(u, u

′, C), (u, u′) ∈ Sswap(C), s.t.
confChange(u′) = 1;

7 if v 6= null then
8 if (u, u′) = (null, null) or score(v) > score(u, u′) then
9 C ← C ∪ {v};

10 else
11 C ← C\{u} ∪ {u′};
12 lastStepImproved← true;

13 else
14 if (u, u′) = (null, null) or score(u, u′) < 0 then
15 if lastStepImproved = true then
16 if w(C) > w(C∗) then C∗ ← C;
17 if hash(C) is already marked then
18 Drop all the vertices in C;
19 continue;

20 Label hash(C) as marked;

21 lastStepImproved← false;

22 else
23 lastStepImproved← true;

24 v′ ← argmaxv′ score(v
′, C), v′ ∈ C;

25 if (u, u′) = (null, null) or score(v′, C) > score(u, u′, C) then
26 C ← C\{v′};
27 else
28 C ← C\{u} ∪ {u′};

29 Apply the Strong Configuration Checking (SCC) strategy;
30 step++;

31 return C∗;

6 Experiments

To evaluate the performance of our method in comparison to other approaches,
experiments are conducted on the PASCAL VOC 2007 image dataset [8] and the
YouTube-Objects video dataset [13]. The standard PASCAL criterion Intersec-
tion over Union (IoU) is adopted for evaluation. Namely, a predicted bounding
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box bp is correct if IoU(bp, bgt) = area(bp∩bgt)
area(bp∪bgt)

> 0.5, where bgt is a ground-truth

annotation of the bounding box. Finally, the percentage of images with correct
object localization (CorLoc) [15] is used as the evaluation protocol. Our method
is denoted as pMWC for the proposed MWC solver.

6.1 Implementation details

Our experiments are carried out on a desktop machine with two Intel(R) Core(TM)
i7 CPUs (2.80GHz) and 64 GB memory. A GeForce GTX Titan X GPU is used
for training and testing related deep neural networks. The proposed MWC solver
is implemented in C/C++. The deep learning framework Caffe is utilized as a
carrier for building the Region Proposal Network and the Triplet Network. The
pipeline of the system is organized in MATLAB with some utilities written as
MEX files, due to the efficiency for high level data management and visualiza-
tion. The default parameters are used to learn RPN and generate the object
candidates. A threshold of 0.5 is used for the NMS process to remove redundant
object proposals. The best K = 20 object candidates are selected in each image.
We set λ = 0.25 in the hinge loss (5) of a triplet. The prime number p in the
hash function (8) is set to 109 + 7, thus the hash table consumes around 1 GB
memory. The RPN and Triplet Network in our method are built upon the VGG-f
model [29] as well as the VGG-16 model [4]. Compared to the VGG-16 model,
the structure of the VGG-f model is much simpler thus more computationally ef-
ficient. The VGG-f and VGG-16 models are pre-trained on the ImageNet dataset
[28] and fine-tuned on the Microsoft COCO dataset [16]. All parameters are fixed
the same in the experiments unless explicitly stated otherwise.

6.2 Experiments on the PASCAL07 dataset

The PASCAL VOC 2007 dataset [8] is used to evaluate the performance of object
co-localization in images. The dataset is split as a training-validation set and a
test set, each with about 5,000 images in 20 classes. We follow [15] to construct
a test set from the training-validation set and denote it as PASCAL07. This is
fine in our framework, since our RPN and Triplet networks are not trained on
this dataset but on ImageNet and COCO datesets as stated in Sec. 6.1.

We first compare the co-localization accuracy of different MWC problem
solvers on the PASCAL07 dataset in Table 1. The graph instances of these MWC
problems are constructed based on the VGG-16 model. Since the PASCAL07
dataset has images from 20 different classes, we construct 20 different graphs, one
graph for each image class. For the experiments on the PASCAL07 dataset, the
average number of nodes in the constructed graphs is 6081.67, and the average
number of edges is 2.16 × 107. The average density of the graphs is 0.9962.
Different solvers are evaluated on exactly the same MWC problem instances
constructed by our co-localization framework. As randomized processes may
exist in different methods, the reported accuracy is taken as the average over 10
runs with different seeds for the random number generator.
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Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV Avg

MC [17] 63.0 45.7 56.1 51.9 14.3 47.8 71.9 61.1 36.2 72.3 46.0 57.2 61.3 79.6 62.3 34.3 69.8 39.3 59.4 9.8 52.0
LSCC [36] 61.3 68.3 61.2 48.1 16.8 67.7 76.9 58.5 41.8 72.3 24.5 63.9 68.3 75.5 69.0 28.6 76.0 47.2 62.1 68.4 57.8

[36] + BMS 63.9 68.3 60.9 50.3 49.2 66.7 76.9 59.3 41.1 72.3 23.0 65.1 68.3 77.1 69.8 27.8 76.0 45.9 62.8 68.4 59.7
TBMA [1] 62.2 69.5 62.1 52.5 18.4 71.5 78.5 61.1 49.2 70.9 30.0 62.0 69.7 80.8 66.0 49.4 70.8 50.2 63.6 68.0 60.3

pMWC 64.7 58.4 60.3 54.1 52.0 71.0 79.2 63.8 43.1 71.6 40.5 64.4 72.1 84.9 69.5 45.3 75.0 51.1 66.3 71.1 62.9

Table 1. Co-localization CorLoc (%) of different MWC solvers on the PASCAL07
dataset.

CNN Backbone RPN+Objectness RPN+entropy Triplet Loss Fine-tuning

Pre-trained VGG-f Model 31.2 53.8 59.3
Pre-trained VGG-16 Model 33.1 56.1 62.9

Table 2. Co-localization CorLoc (%) of different strategies on the PASCAL07 dataset.

For the method [17], it solves the MWC problem in the relaxed continuous
domain and a modified Frank-Wolfe algorithm is proposed to attack the problem.
Similar to our approach, the solver TBMA [1] also solves the MWC problem
directly in the discrete domain. Compared to their solver, our solver will restart
if a local optimum is revisited, while TBMA will restart if the solution quality
has not been improved for a specified number of steps. As for the solver LSCC
[36], originally it is dedicated to solve the MWC problems where the edge weights
are absent. Namely, the add, swap or drop operations change the weight of a
clique considering related vertex weights only. Here we modify it so that the edge
weights are taken into account in these operations. Two versions of the LSCC
solver in the original paper are evaluated, and they serve as the baseline results
in our experiment. The experiments justify our choice of the MWC problem
solver, which improves the accuracy of object co-localization.

The co-localization accuracy of different object candidate generation and fea-
ture embedding methods on the PASCAL07 dataset are compared in Table 2.
Different CNN models are used to extract the object candidate features, then the
cosine similarity is applied on these deep neural network features. It shows that
the proposed re-ranking the object candidates in each image according to the
entropy of class distribution leads to significantly better results than the com-
monly used re-ranking based on objectness. With the involvement of the Triplet
Network learning framework, the co-localization performance improves further.
The experiments validate that the performance of the object co-localization is
benefited from the proper choice of the object candidate generation and feature
embedding scheme.

The co-localization accuracies of different object co-localization methods on
the PASCAL07 dataset are reported in Table 3. The results of the compared
methods are directly taken from the corresponding literatures. Among these
methods using deep CNN features as visual descriptors [15, 35, 3, 25, 37, 7, 26],
our method demonstrates superior results over recent state-of-the-art methods.
The experiments confirm the effectiveness of the proposed object co-localization
framework.
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Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV Avg

Joulin et al [12] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
Cho et al [6] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
Li et al [15] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Wang et al [35] 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
Bilen et al [3] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
Ren et al [25] 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9
Wei et al [37] 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

Wang et al [33] 80.1 63.9 51.5 4.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5
Cinbis et al [7] 67.1 66.1 49.8 34.5 23.3 68.9 83.5 44.1 27.7 71.8 49.0 48.0 65.2 79.3 37.4 42.9 65.2 51.9 62.8 46.2 54.2

Rochan et al [26] 78.5 63.3 66.3 56.3 19.6 82.2 74.7 69.1 22.4 72.3 31.0 62.9 74.9 78.3 48.6 29.3 64.5 36.2 75.8 69.5 58.8

pMWC (VGG-f) 59.7 67.1 60.3 46.4 51.2 68.8 75.9 57.9 40.4 77.3 21.5 64.6 65.2 74.7 67.3 41.6 77.1 48.0 60.9 60.9 59.3
pMWC (VGG-16) 64.7 58.4 60.3 54.1 52.0 71.0 79.2 63.8 43.1 71.6 40.5 64.4 72.1 84.9 69.5 45.3 75.0 51.1 66.3 71.1 62.9

Table 3. Co-localization CorLoc (%) of different methods on the PASCAL07 dataset.

Method Aeroplane Bird Boat Car Cat Cow Dog Horse Motorbike Train Average

Prest et al [22] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5
Joulin et al [12] 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 30.9

Papazoglou et al [20] 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1
Zhang et al [38] 75.8 60.8 43.7 71.1 46.5 54.6 55.5 54.9 42.4 35.8 54.1

Rochan et al [26] 56.0 30.1 39.6 85.7 24.7 87.8 55.6 60.2 61.8 51.7 55.3

pMWC (VGG-f) 48.5 74.4 52.8 61.6 59.4 69.3 71.4 68.5 73.6 43.0 62.3
pMWC (VGG-16) 44.3 68.6 56.7 63.5 50.0 70.7 71.2 75.9 73.8 55.5 63.0

Table 4. Co-localization CorLoc (%) of different methods on the YouTube-Objects
dataset.

6.3 Experiments on the YouTube-Objects dataset

The Youtube-Objects dataset [13] is used for object co-localization in videos. The
dataset contains videos collected from YouTube with 10 object classes. There are
about 570,000 frames with 1,407 annotations in the first version of the dataset
[22]. According to our knowledge, it is the largest available video dataset with
bounding-box annotations on multiple classes. The individual video frames after
decompression are used in our experiments to avoid possible confusion when ap-
plying different video decoders. We only perform object co-localization on video
frames with ground-truth annotations, following the practice in [12]. No addi-
tional spatial-temporal information is utilized in our method. The co-localization
accuracy of different methods on the YouTube-Objects dataset are summarized
in Table 4. The experiments justify that the proposed object co-localization
framework is also very effective for mining common objects in videos. Two other
methods [38, 26] also utilize deep networks. The Youtube-Objects dataset comes
with the test videos divided in 10 classes according to which dominant object is
mostly present in them. Hence we construct 10 different graphs for this dataset.

7 Conclusion

In this paper, we present a novel framework to address the problem of object
co-localization. It provides a practical and general solution for research and appli-
cations related to the MWC problem. Besides, deep learning based methods are
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utilized to localize the candidates of the common objects and describe their vi-
sual characteristics. This makes it possible to better discriminate the inter-class
similarities and identify the intra-class variations. Finally, a cycle elimination
based restart strategy is proposed to guide the local search for the MWC. It suc-
cessfully resolves the cycling issue in the optimization process. The experimental
results on the object co-localization tasks demonstrate that our MWC solver is
particularly suitable for graphs with high density. The proposed method shows
significant improvements over several strong baselines.
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