Skip to main content

BSLoc: Base Station ID-Based Telco Outdoor Localization

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2018)

Abstract

Telecommunication (Telco) localization is an important complementary technique of Global Position System (GPS). Traditional Telco localization approaches requires radio signal strength indicator (RSSI) of mobile devices with the connected base stations (BSs). Unfortunately, many of real-world signal measurement could miss RSSI values, and Telco operators typically will not record RSSI information, e.g., due to the major departure from current operational practices of Telco operators [6]. To address this problem, we design a novel BS ID-based coarse-to-fine Telco localization model, namely BSLoc, which requires only the connected BS IDs, time and speed information of mobile devices. BSLoc consists of two layers: (1) a sequence localization model via Hidden Markov Model (HMM) to localize the mobile devices with coarse-grained locations, and (2) a machine learning regression model with engineered features to acquire the fine-grained locations of mobile devices. Our experiments verify that, on a 2G dataset, BSLoc achieves a median error 26.0 m, which is almost comparable with two state-of-art RSSI-based techniques [9] 17.0 m and [20] 20.3 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forney, G.D.: The viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  2. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  3. Huang, Y., et al.: Experimental study of telco localization methods. In: 2017 18th IEEE International Conference on Mobile Data Management, MDM, pp. 299–306. IEEE (2017)

    Google Scholar 

  4. Ibrahim, M., Youssef, M.: CellSense: a probabilistic RSSI-based GSM positioning system. In: 2010 IEEE Global Telecommunications Conference, GLOBECOM 2010, pp. 1–5. IEEE (2010)

    Google Scholar 

  5. Ibrahim, M., Youssef, M.: A hidden Markov model for localization using low-end GSM cell phones. In: 2011 IEEE International Conference on Communications, ICC, pp. 1–5. IEEE (2011)

    Google Scholar 

  6. Leontiadis, I., Lima, A., Kwak, H., Stanojevic, R., Wetherall, D., Papagiannaki, K.: From cells to streets: estimating mobile paths with cellular-side data. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, pp. 121–132. ACM (2014)

    Google Scholar 

  7. Lopes, L., Viller, E., Ludden, B.: GSM standards activity on location (1999)

    Google Scholar 

  8. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 352–361. ACM (2009)

    Google Scholar 

  9. Margolies, R., et al.: Can you find me now? Evaluation of network-based localization in a 4G LTE network. In: IEEE Conference on Computer Communications, INFOCOM 2017, pp. 1–9. IEEE (2017)

    Google Scholar 

  10. Paek, J., Kim, K.H., Singh, J.P., Govindan, R.: Energy-efficient positioning for smartphones using Cell-ID sequence matching. In: Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, pp. 293–306. ACM (2011)

    Google Scholar 

  11. Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22(4), 54–69 (2005)

    Article  Google Scholar 

  12. Perera, K., Bhattacharya, T., Kulik, L., Bailey, J.: Trajectory inference for mobile devices using connected cell towers. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 23. ACM (2015)

    Google Scholar 

  13. Ray, A., Deb, S., Monogioudis, P.: Localization of LTE measurement records with missing information. In: The 35th Annual IEEE International Conference on Computer Communications, IEEE INFOCOM 2016, pp. 1–9. IEEE (2016)

    Google Scholar 

  14. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  15. Swales, S., Maloney, J., Stevenson, J.: Locating mobile phones and the US wireless E-911 mandate (1999)

    Google Scholar 

  16. Thiagarajan, A., Ravindranath, L., Balakrishnan, H., Madden, S., Girod, L.: Accurate, low-energy trajectory mapping for mobile devices (2011)

    Google Scholar 

  17. Vaghefi, R.M., Gholami, M.R., Ström, E.G.: RSS-based sensor localization with unknown transmit power. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, pp. 2480–2483. IEEE (2011)

    Google Scholar 

  18. Vo, Q.D., De, P.: A survey of fingerprint-based outdoor localization. IEEE Commun. Surv. Tutor. 18(1), 491–506 (2016)

    Article  Google Scholar 

  19. Zhang, Y., Rao, W., Yuan, M., Zeng, J., Yang, H.: Confidence model-based data repair for telco localization. In: 2017 18th IEEE International Conference on Mobile Data Management, MDM, pp. 186–195. IEEE (2017)

    Google Scholar 

  20. Zhu, F., et al.: City-scale localization with telco big data. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 439–448. ACM (2016)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by National Natural Science Foundation of China (Grant No. 61572365, 61503286, 61702372) and sponsored by The Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixiong Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, J. et al. (2019). BSLoc: Base Station ID-Based Telco Outdoor Localization. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2018. Lecture Notes in Computer Science(), vol 11410. Springer, Cham. https://doi.org/10.1007/978-3-030-14094-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14094-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14093-9

  • Online ISBN: 978-3-030-14094-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics