1710.09280v2 [cs.DC] 28 Feb 2018

arXiv

Competitive Routing in Hybrid Communication
Networks*

Daniel Jung!, Christina Kolb?, Christian Scheideler3, and Jannik
Sundermeier?

1 Heinz Nixdorf Institute & Computer Science Department, Paderborn
University, Paderborn, Germany
jungd@hni.upb.de

2 Department of Computer Science, Paderborn University, Paderborn, Germany
ckolb@mail.uni-paderborn.de

3 Department of Computer Science, Paderborn University, Paderborn, Germany
scheideler@uni-paderborn.de

4 Department of Computer Science, Paderborn University, Paderborn, Germany
janniksu@mail.uni-paderborn.de

—— Abstract

Routing is a challenging problem for wireless ad hoc networks, especially when the nodes are
mobile and spread so widely that in most cases multiple hops are needed to route a message from
one node to another. In fact, it is known that any online routing protocol has a poor performance
in the worst case, in a sense that there is a distribution of nodes resulting in bad routing paths
for that protocol, even if the nodes know their geographic positions and the geographic position
of the destination of a message is known. The reason for that is that radio holes in the ad hoc
network may require messages to take long detours in order to get to a destination, which are
hard to find in an online fashion.

In this paper, we assume that the wireless ad hoc network can make limited use of long-range
links provided by a global communication infrastructure like a cellular infrastructure or a satellite
in order to compute an abstraction of the wireless ad hoc network that allows the messages to
be sent along near-shortest paths in the ad hoc network. We present distributed algorithms that
compute an abstraction of the ad hoc network in O (log2 n) time using long-range links, which
results in c-competitive routing paths between any two nodes of the ad hoc network for some
constant c if the convex hulls of the radio holes do not intersect. We also show that the storage
needed for the abstraction just depends on the number and size of the radio holes in the wireless
ad hoc network and is independent on the total number of nodes, and this information just has
to be known to a few nodes for the routing to work.

1998 ACM Subject Classification C.2.4 Distributed Systems
Keywords and phrases greedy routing, ad hoc networks, convex hulls, c-competitiveness

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

This paper is eligible for best student paper award (all of the authors are full-time students).

* This work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Center ’On-The-Fly Computing’ (SFB 901).

m ® © Daniel Jung, Christina Kolb, Christian Scheideler and Jannik Sundermeier;
R=amw~a liccnsed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).

Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1723@

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2

Competitive Routing in Hybrid Communication Networks

1 Introduction

Nowadays almost every person has a cell phone. Hence, in a city center the density of cell
phones would, in principle, be sufficiently high to set up a well-connected wireless ad hoc
network spanning the entire city center, which could then be used for many interesting
applications in the area of social networks. Wireless ad hoc networks have the advantage
that there is no limit (other than the bandwidth and battery constraints) on the amount of
data that can be exchanged while the amount of data that can be transferred at a reasonable
rate via long-range links using the cellular infrastructure or satellite is limited (by some data
plan) or costly. However, routing in a mobile ad hoc network is challenging, even if the
geographic position of the destination is known, since buildings or other obstacles like rivers
may create radio holes that make it non-trivial to find a near-shortest routing path. So the
question we address in this paper is:

Can long-range links be used effectively to find near-shortest routing paths in the ad hoc
network?

A simple solution to that problem would be that all nodes regularly post their geographic
position and the nodes within their communication range to a server in the Internet. This
would allow the server to compute optimal routing paths so that whenever a node wants to
forward a message to a certain destination, the server can tell it which of the neighbors to
send it to. An alternative approach that we are pursuing in this paper is a purely peer-to-peer
based approach in which no other equipment other than the cell phones and an infrastructure
for the long-range links needs to be used. To the best of our knowledge, our approach is
the first one that is making use of a global communication infrastructure in a peer-to-peer
manner in order to efficiently determine short routing paths for an ad hoc network. Wireless
ad hoc networks have been considered before that utilize base stations in order to exchange
messages more effectively, but there, messages will be sent via long-range links to bridge long
distances while we will only allow messages to be sent via ad hoc links.

1.1 Model

1) Radio hole detection
2) Fast calculation of radio hole abstraction

3) Fast calculation of c-competitive path between sonrce and targe

Figure 1 An overview of our approach. It contains the detection of radio holes (1), the computation
of a hole abstraction (2) and a routing algorithm that finds c-competitive paths (3). The blue regions
are called bay areas.

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

Throughout this paper, we consider V C R? to be a set of nodes in the Euclidean
plane with unique IDs (e.g., phone numbers), where |V| = n. For any given pair of nodes
u = (Ug,Uy), v = (Vs,vy), we denote the Euclidean distance between u and v by |juv|| =

\/ (ug — vg)° + (uy — vy)g. We model our cell phone network as a hybrid directed graph
H = (V,E, Esp) where the node set V represents the set of cell phones, an edge (v, w) is in
E whenever v knows the phone number (or simply ID) of w, and an edge (v, w) € E is also
in the ad hoc edge set E o whenever v can send a message to w using its Wifi interface. For

all edges (v,w) € E\ Eapg, v can only use a long-range link to directly send a message to w.

We adopt the unit disk graph model for the edges in E 4.

» Definition 1. For any point set V C R? the Unit Disk Graph of V, UDG (V), is a
bi-directed graph that contains all edges (u,v) with ||uv|| < 1.

We assume UDG (V) to be strongly connected so that a message can be sent from every
node to every other node in V' by just using ad hoc edges. While the ad hoc edges are fixed
in Sections [2]- [§], the nodes can nevertheless change E over time: If a node v knows the
IDs of nodes w and w’, then it can send the ID of w to w’, which adds (w,w’) to E. This
procedure is called ID-introduction. Alternatively, if v deletes the address of some node w
with (v, w) € E, then (v,w) is removed from E. There are no other means of changing E,
i.e., a node v cannot learn about an ID of a node w unless w is in v’s UDG-neighborhood or
the ID of w is sent to v by some other node.

Moreover, we consider synchronous message passing in which time is divided into rounds.

More precisely, we assume that every message initiated in round ¢ is delivered at the beginning
of round 7 + 1, and a node can process all messages in a round that have been delivered at
the beginning of that round.

1.2 Objective

Our objective is to design an efficient routing algorithm for ad hoc networks, where the
source s of a message knows the ID of the destination ¢, or in other words, (s,t) € E. This
is a reasonable constraint since cell phone users normally wouldn’t call cell phones whose
users are unknown to them. Thus, whenever a message needs to be sent from a source s to
some destination ¢, we assume that the geographic position of ¢ is known, since s can ask ¢
via a long-range link for ¢'s geographic position before sending the message towards ¢ using
the ad hoc network.

Our routing algorithm consists of two parts: After determining the radio holes of the
wireless ad hoc network, we compute an abstraction, i.e., a compact representation of these

radio holes and use that abstraction in order to route messages along c-competitive paths.

See Figure [1] for a visual description of these parts.

We call a routing strategy c-competitive if for all node pairs (s, t), the routing path (s,...,t)
from s to t obtained by the strategy satisfies |[(s,...,t)|| < ¢-d(s,t), where ||(s,...,t)||
denotes the Euclidean length of (s,...,t) and d(s,t) denotes the shortest Euclidean length
of a path in UDG (V) from s to t.

We will focus on computing suitable abstractions of radio holes in the ad hoc network.

The intuition behind that is simple: if there are no radio holes, then simple greedy routing
(i-e., always take the neighbor that is closest to the destination) would already give us
short routing paths to arbitrary destinations. Radio holes can be specified by the nodes
along its boundary, but there can be many such nodes. Therefore, we will also look at
more compact representations of radio holes like the (nodes forming the) convex hull of its

23:3

CVIT 2016

23:4 Competitive Routing in Hybrid Communication Networks

boundary. Considering convex hulls as radio hole abstractions makes sense because in huge
cities like New York City the shape of radio holes (caused by obstacles like buildings) is in
many cases convex or close to a convex shape, and these shapes do not overlap. In order
to obtain the desired abstraction, we will make use of ID-introductions in order to form
an overlay network that allows us to compute these abstractions in a distributed manner
using the long-range links. Since sending messages via long-range links is costly (in terms
of money), our goal is to keep the long-range communication work of the nodes as low as
possible.

1.3 Our Contributions

We consider any hybrid graph G = (V, E, Eag) where the Unit Disk Graph of V' is connected.
Let H be the set of radio holes in G and C' be the set of convex hulls of radio holes in H.
P(h) denotes the length of the perimeter of a radio hole h € H. Further, L(c) denotes the
circumference of a minimum bounding box of a convex hull ¢ € C. Our main contribution is:

» Theorem 2. For any distribution of the nodes in V that ensures that UDG (V') is connected
and of bounded degree and that the convex hulls of the radio holes do mot overlap, our
algorithm computes an abstraction of UDG(V) in O(log®n) communication rounds using
only polylogarithmic communication work at each node so that c-competitive paths between
all source-destination pairs can be found in an online fashion.

The space needed by the convex hull nodes of the radio holes is
O (X .cc L(c)). Nodes lying on the boundary of radio holes need storage of size O (maxpep P(h)).
For every other node, the space requirement is constant.

The rest of this paper is dedicated to the proof of Theorem [2] For that, we use the
following approach:

1. Given the Unit Disk Graph, we compute the 2-localized Delaunay Graph. This only
needs O(1) communication rounds. The 2-localized Delaunay Graph allows the nodes
to detect whether they are at the boundary of a radio hole. Nodes at the boundary can
then form a ring.

2. We then develop a distributed algorithm that computes a convex hull of a ring of n nodes
in expected O (logn) communication rounds.

3. Afterwards, we introduce the nodes of the convex hulls to each other so that they form a
clique. This will allow them to compute c-competitive paths for all source-destination pairs
that are outside of a convex hull. The introduction requires O(log®n) communication
rounds. In order to handle the case that the source or destination lies inside a convex
hull, we will make use of a Dominating Set of the boundary nodes. The Dominating Set
can be computed in O(logn) communication rounds.

Finally, we also consider the dynamic scenario (i.e., UDG(V') changes over time) in Section @

1.4 Related Work

Many routing protocols have already been proposed for wired as well as wireless commu-
nication networks. Since the focus of this paper is on wireless networks, we will restrict
our overview on related work to this area. Most research on routing in wireless networks
has been done in the context of mobile ad-hoc networks, i.e., wireless networks that do not
rely on some external infrastructure for their operation. There are basically two types of
routing protocols for mobile ad hoc networks: table driven / proactive protocols, and on
demand / reactive protocols. In proactive protocols, the nodes keep updating their routing

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

tables to maintain the latest view of the network. Examples of such protocols are DSDV,
OLSR, and WARP. In reactive protocols, routes are only created when required. Examples
of reactive protocols are DSR, AODV, and TORA. Also hybrid protocols, i.e., protocols that
are a combination of proactive and reactive approaches, are known like SRP and ZRP. See,
for example, [10] for a survey.

Proactive protocols only work well for small and relatively static ad hoc networks since
otherwise the routing tables can get very large, and therefore the overhead of continuously
updating them becomes prohibitively expensive. To reduce these problems, hierarchical and
cluster-based strategies have been proposed like FSR and CGSR, but if the diameter of
the ad hoc network is large, it may still take a long time for the tables to be up-to-date.
Reactive protocols can produce a significantly lower overhead if messages are sent to only a
small set of nodes. However, if many messages with different destinations are injected, the
overhead of discovering routes can become prohibitively expensive. To reduce this problem,
location-based variants have been proposed like LAR, but these only work well if the radio
holes are not too large.

Routing work in theory has mostly focused on approaches where routing paths do not
have to be set up before sending out a message. Instead the focus has been on simple online
routing strategies that are potentially based on a suitable overlay network consisting of a
subset of the wireless connections available to the nodes. The most simple online strategy is
to use a greedy strategy to route a message to a destination ¢: always forward the message
to the neighbor closest to ¢t (with respect to some metric). Unfortunately, greedy strategies
like Compass routing [4] fail for graphs with radio holes, i.e., they might get stuck at a dead
end. This can be avoided with the help of suitable virtual coordinates for the nodes (e.g.,
[14]), but computing these is quite expensive. Instead, Kuhn et al. [I3] proposed GOAFR,
a routing strategy that uses a combination of greedy and face routing, which can find paths
with quadratic competitiveness [I3]. They also proved that this is worst-case optimal. That
is, it is not possible to design routing strategies which use only local knowledge and achieve
a better competitiveness than quadratic. Their lower bound is based on the fact that a radio
hole might have a complex structure, like a maze, making it hard to find a short path to a
destination in an online fashion. Some other examples of the many routing strategies that
have been proposed are [20] [16, 22]. For example, Rihrup and Schindelhauer considered
routing strategies for grids that contain failed nodes [22]. This is similar to our scenario as
failed nodes behave like radio holes in an ad hoc network. Their procedure uses a strategic
search which distributes a message over multiple paths. They proved that their procedure is
asymptotically optimal for their setting. However, it is not clear how the strategy can be
generalized to arbitrary node distributions.

So the question arises: How to make use of long-range links to find a suitable abstraction
of the radio holes with a local strategy such that we obtain c-competitive paths for any
source-destination pair in the underlying ad hoc network?

To answer this question, we consider a hybrid communication model. A Hybrid Com-
munication Network has been introduced in different contexts [6 [I8]. To the best of our
knowledge, we are the first ones that consider these types of networks for the purpose of
finding paths in ad hoc networks.

At the core of our algorithm is a 2-localized Delaunay Graph of the ad hoc network. A
2-localized Delaunay Graph is related to the Delaunay triangulation, which was intruduced
in [8]. The advantage of using Delaunay graphs is that they are Euclidean c-spanners, which
means that they contain a path for any pair of nodes of length at most ¢ times their Euclidean
distance. The currently best known bound for ¢ is 1.998 and was proven by Xia [24]. Because

23:5

CVIT 2016

23:6

Competitive Routing in Hybrid Communication Networks

wireless communication is only possible for limited distances, Delaunay graphs are not directly
applicable to ad-hoc networks, but Delaunay graphs restricted to UDG edges, which are
known as Restricted Delaunay Graphs [I5]. Restricted Delaunay graphs are still hard to
compute, so we will focus on the related 2-localized Delaunay Graph, which can be built in a
constant number of rounds [I5]. Based on that graph, one can use Chew’s Algorithm [3] to
efficiently route messages if there are no radio holes.

Chew’s Algorithm routes to nodes of triangles that intersect the direct line segment from
the source node s to the destination t¢. In cases where these triangulations are incomplete
due to radio holes, routing strategies that only consider nodes of intersected triangles cannot
be o (n)-competitive when n is the number of nodes in the network [5]. To avoid problems
with radio holes, we calculate an abstraction of radio holes, i.e., we calculate the convex hulls
of radio holes with the help of long-range links. Computing the convex hull of a set of points
is one of the most considered problems in computational geometry. There are publications
dealing with distributed computation of convex hulls such as [2, [19]. Since we are interested
in algorithms with polylogarithmic runtime, we use the parallel algorithm which computes
the convex hull in time O (logn) by [I7]. This algorithm makes use of a hypercube, which
we build via the technique of pointer doubling. This technique has been mentioned by Wyllie
for the first time [23]. Further, a parallel sorting algorithm in a hypercube is included in
the preprocessing. Batcher’s Bitonic Sort has a deterministic parallel runtime of (’)(log2 n).
Alternatively, the randomized algorithm of Reif and Valiant has an expected runtime of
O(logn).

Our approach of getting information about the 2-localized Delaunay graph inside a convex
hull is based on calculating a Dominating Set of a special set of nodes inside this convex hull.
For the distributed computation of Dominating Sets, several algorithms have been proposed
in the literature. A popular algorithm has been introduced by Jia et al., which computes a
O (log A) approximation of the smallest possible dominating set, where A denotes the degree
of the network [IT]. Note that the computation of smallest dominating sets is proven to
be NP complete. The algorithm requires O (logn - log A) communication rounds with high
probability.

2 Preliminaries

In this section, we introduce the preliminaries concerning the network topology and general
results about routing in ad hoc networks. In Section we introduce the network topology
for the ad hoc network in this work, the 2-localized Delaunay Graph. Moreover, we explain
properties of the network structure. Section explains general results about routing in
2-localized Delaunay Graphs.

2.1 Spanner-Properties of the Ad Hoc Network

In this work, we consider a 2-localized Delaunay Graph LDel?(V) as topology for the ad
hoc network. Before we give a formal definition of this topology, we introduce the Delaunay
Graph. Throughout this paper, we assume the set of nodes V' to be non-pathological, i.e.,
there are no three nodes on a line and no four nodes on a cycle. Moreover, we assume
that the coordinates of each node are unique and thus there are no two nodes on the same
position.

» Definition 3. Let O (u,v,w) be the unique circle through the nodes u,v and w and

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

A (u,v,w) be the triangle formed by the nodes u,v and w. For any V C R?, the Delaunay
Graph Del (V) of V' contains all triangles A (u, v, w) for which O (u, v, w) does not contain
any further node besides u,v and w.

The Delaunay Graph does not restrict the length of an edge in any sense. Hence, it is not a
suitable graph structure for the ad hoc network as edges may exceed the transmission range
of a node. The 2-localized Delaunay Graph is a structure that only allows edges which do
not exceed the transmission range of a node. Additionally, it can be constructed efficiently
in a distributed manner. The following definitions can be found in [I5].

» Definition 4. A triangle A (u, v, w) satisfies the k-localized Delaunay property if

1. all edges of A (u,v,w) have length at most 1

2. the interior disk of A (u,v,w) does not contain any node which can be reached within &
hops from u,v or w in UDG(V).

» Definition 5. The k-localized Delaunay Graph LDel* (V') consists of

1. all edges of k-localized triangles

2. all edges (u,v) for which the circle with diameter o does not contain any further node
w € V (Gabriel Edges)

By choosing k& = 2, we obtain the 2-localized Delaunay Graph which is also a planar graph.

Since 2-localized Delaunay Graphs do not contain all edges of a corresponding Delaunay
Graph, one cannot simply use routing strategies for Delaunay Graphs in our scenario. We
denote faces of the 2-localized Delaunay Graph which are not triangles as holes. For the
formal definition of holes, we distinguish between inner and outer holes.

» Definition 6 (Inner Hole). Let V € R%. An inner hole is a face of LDel? (V') with at least
4 nodes.

» Definition 7 (Outer Hole). Let V € R2. Furthermore, let CH (V') be the set of all edges of
the convex hull of V. Define LDel2 (V) to be the graph that contains all edges of LDel?(V)
and CH (V). An outer hole is a face in LDel? (V) with at least 3 nodes, that contains an
edge e € CH (V) with |le]| > 1.

Nodes lying on the perimeter of a hole are called hole nodes. Note that the hole nodes of the
same hole form a ring, i.e., each hole node is adjacent to exactly two other hole nodes for
each hole it is part of.

The choice of the 2-localized Delaunay Graph as network topology is motivated by its
spanner-property. We start with introducing spanner-properties of the original Delaunay
Graph. The Delaunay Graph Del (V') contains paths between every pair of nodes v and w of
V' which are not longer than ¢ times their Euclidean distance. We call these paths as follows:

» Definition 8. A path (v,...,w) between two nodes v and w in a geometric graph G is a
geometric c-spanning path between v and w, if its length is at most ¢ times the Euclidean
distance between w and v.

Classes of graphs that contain such paths for every pair of nodes are called geometric
c-spanners.

» Definition 9. A graph G = (V, E) is called a geometric c-spanner, if for all v,w € V there
is a geometric ¢-spanning path (v,...,w) in G.

Delaunay Graphs are proven to be geometric c-spanners. The currently best known
bound on ¢ is 1.998 and was proven by Xia [24].

23:7

CVIT 2016

23:8

Competitive Routing in Hybrid Communication Networks

» Theorem 10. There exists a path in a Delaunay Graph from node s to t of length less
than 1.998 - ||st||.

Xia argues that the bound of 1.998 also relates to 2-localized Delaunay Graphs [24]. However,
these graphs are not spanners of the Euclidean metric but of the Unit Disk Graph.

» Theorem 11. In LDel?(V) for V.C R?, there exists a path between any pair of nodes s
and t with length at most 1.998 times their distance in UDG(V).

2.2 Online Routing in 2-localized Delaunay Graphs

Finding paths in 2-localized Delaunay Graphs that fulfill the spanning-property proven by
Xia is only possible if knowledge about the entire graph is available. Kuhn and Wattenhofer
have proven that any routing strategy for 2-localized Delaunay Graphs (or even for any type
of graphs based on the Unit Disk links) which only considers the local neighbors of each
node cannot be constant-competitive for any constant ¢ [I2]. Bose et al. introduced the
online routing strategy Chew’s Algorithm for Delaunay Graphs which only considers edges of
triangles that are intersected by the direct line segment between source and destination [2].

» Theorem 12. There exists an online routing strategy for Delaunay Graphs which finds a
path between any source s and target t with length at most 5.9 - ||st||.

In case the source and the target node of the 2-localized Delaunay Graph are visible from
each other, i.e., their direct line segment does not intersect any hole, Chew’s Algorithm is
also applicable.

» Theorem 13. Let s and t be two wvisible nodes of a 2-localized Delaunay Graph. Chew’s
Algorithm finds a path between s and t with length at most 5.9]|st]|.

To be able to find constant-competitive paths between any pair of nodes in the 2-localized
Delaunay Graph, we take a look at results from computational geometry. If we abstract
from the underlying 2-localized Delaunay Graph, our scenario is comparable to routing in
polygonal domains. These kinds of routing problems usually consider a starting point s and
a target point ¢ in the Euclidean plane. The goal is to find a path in the plane from s to .
The challenging aspect of these problems is the presence of polygonal obstacles which avoid
walking directly along the line segment st. In our scenario, these polygonal obstacles are
radio holes. De Berg et al. showed that it is enough to consider nodes of obstacle polygons
for finding shortest paths in polygonal domains [I]:

» Lemma 14. Any shortest path between s and t among a set S of disjoint polygonal obstacles
is a polygonal path whose inner nodes are nodes of S.

The usual procedure for finding shortest paths in polygonal domains is the computation
of a Visibility Graph and applying a single source shortest path algorithm (e.g., the algorithm
of Dijkstra) [1]. In the Visibility Graph Vis (V) of a set of polygons, V represents the set of
corners of the polygon, and there is an edge {v,w} in Vis (V) if and only if a line can be
drawn from v to w without crossing any polygon, i.e., v is visible from w.

The combination of Theorem and Lemma implies that a shortest path in the
Visibility Graph of hole nodes of the 2-localized Delaunay Graph (which would be the
shortest possible geometric connection between the source and the target node) yields to
a 5.9-competitive path in the 2-localized Delaunay Graph by applying Chew’s Algorithm
between every pair of consecutive nodes on the path.

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

3 General Routing Protocol

In this section, we introduce a general routing strategy for 2-localized Delaunay Graphs by
using long-range links to exchange information about locations and shapes of holes. We
improve this strategy in Section [] with respect to storage requirements and distributed
computation time. Throughout this section, we assume that the 2-localized Delaunay Graph
is already correct. For more details about establishing a 2-localized Delaunay Graph of ad
hoc links, we refer the reader to Section [5.1] Furthermore, we assume for now that every

node which is located on the perimeter of a hole stores a Visibility Graph of all hole nodes.

In our scenario, two hole nodes are visible from each other if their direct line segment does
not intersect any hole of the 2-localized Delaunay Graph. In the following, we show that this
helps us to compute competitive paths for the 2-localized Delaunay Graph by introducing a
routing strategy that finds these paths. Section[5|later deals with aggregating the information
needed for the Visibility Graphs.

The routing protocol works as follows: A source node s that wants to send data to a target
node ¢ initially contacts ¢ via a long-range link to ask for #'s geographical position, i.e., a
tuple of coordinates (t,%,). t responds with its position and s afterwards sends its message
via Chew’s Algorithm towards (t,t,). We distinguish two cases:

1. The message reaches t via Chew’s Algorithm

2. The message reaches a hole node hg, i.e., the direct line segment st intersects a hole

In case (1), we immediately obtain a 5.9-competitive path from s to t. Otherwise, hq inserts ¢
into its Visibility Graph and applies a shortest path algorithm from itself to ¢. The resulting

shortest path (ho, hi, ho,..., hy =1) is then used to transmit the message via ad hoc links.

By applying Chew’s Algorithm, a path of length 5.9 - ||hoh1 || is obtained. After reaching
h1, the procedure is repeated until the message finally reaches ¢t. Let ps; be the shortest
path between s and t in the Visibility Graph. In case hg lies on the shortest path between
s and t in the Visibility Graph, the resulting path in the 2-localized Delaunay Graph has
length at most 5.9 - ||ps|| (based on Lemma [14] and Chew’s Algorithm). Otherwise, the
initial path to hg is a detour. Nevertheless, it can be easily seen that the detour increases
the competitiveness only by a constant factor. As Chew’s Algorithm did not reach ¢ but a
node hyg, it follows that the path taken from s to hy has length less or equal to 5.9||st|| which
is less or equal to 5.9 times the shortest possible path between s and ¢ in the 2-localized
Delaunay Graph. Hence, the detour increases the competitive constant only by an additional
factor of 3. Consequently, we obtain an 17.7-competitive path between s and ¢.

There are, however, some drawbacks with respect to the storage capacity required at hole
nodes. Unfortunately, the nodes on the perimeter of a radio hole potentially have to store a
huge Visibility Graph. In fact, it is possible to have a radio hole in LDel?(V) with © (n)
nodes on its perimeter. Also, if h denotes the number of nodes on the perimeter of a hole, then
the Visibility Graphs may contain up to © (hz) edges. An idea to reduce the number of edges
to O (h) is to not compute the entire Visibility Graph but only a Delaunay Graph of all nodes
lying on different holes. As Delaunay Graphs are planar graphs, this reduces the number of
edges to O (h). However, this also affects the obtained length of the paths. Delaunay Graphs
do not contain the shortest geometric connection between two nodes in general but a path
which is 1.998-competitive to such a path [24]. Hence, by using a Delaunay Graph instead of
a Visibility Graph, we obtain a path length of 1.998 - 17.7 - ||pst|| < 35.37 - ||pse]|-

23:9

CVIT 2016

23:10

Competitive Routing in Hybrid Communication Networks

4 Routing Protocol for Convex Hulls as Hole Abstractions

In Section [3 we highlighted the advantage of a Visibility Graph or a Delaunay Graph of
all hole nodes to find c-competitive paths in the ad hoc network. Nevertheless, the storage
requirements for each hole node are linear in the total number of hole nodes. A natural
question is how to reduce the number of nodes in the Visibility Graph even further while
still being able to compute competitive paths. In Section [I.I} we show that considering only
convex hulls of holes reduces the space requirements significantly in case the convex hulls of
holes do not intersect. Therefore, we assume for the rest of the paper that there is no pair of
intersecting convex hulls of holes. Moreover, we analyze in Section [1.2] that considering only
convex hulls still allows us to find competitive paths between almost all source-destination
pairs. Based on these observations, we introduce a c-competitive routing strategy similar
to our protocol of Section [3] which considers only hole nodes which lie on convex hulls of
holes in Section [£.3] The mentioned protocol, however, cannot deal with specific cases in
which both the source and the destination lie inside the same area inside of a convex hull. A
solution to these cases is introduced in Section [£.4

4.1 Space Reduction

We can obtain a further space reduction if we focus on locally convex hulls of the radio holes.

» Definition 15. Let (v, v9,...,vk,v1) be a cycle of nodes in

LDel?(V) at the perimeter of some hole. We call (v;,, v;,,

coy U, 05,) for some 1 < 4y < iy < ... i < k a locally convex hull of that hole if (1)
lvi;vi, ., || <1 forall j € {1,...,¢} (where v;,,, = v;), and (2) there are no 3 consecutive
nodes u, v, w in that sequence where Z (u,v, w) > 180° and |luw]|| < 1.

For the locally convex hulls it can be shown:

» Lemma 16. For any cycle (vi,va,...,v,v1) of hole nodes in LDel?>(V) that covers an
area of size A, any locally convex hull of that cycle contains O (A) nodes.

Proof of Lemma Consider any locally convex hull (v;,,vi,, ..., v, v,), and let u, v, w
be 3 consecutive nodes in that sequence. I f £ (u,v,w) > 180°, then we know from the
definition of the locally convex hull that |uw| > 1. If Z(u,v,w) < 180°, then |uw| > 1
as well since otherwise v would not be on the perimeter of the hole. This implies for the
predecessor p of u and the successor s of w that ||pv]| > 1 and ||vs|| > 1. Also, there cannot

exist any other node x € {v;,,...,v;, } with |jvz| <1 as otherwise we had a shortcut in the
perimeter, meaning that (vq,vs, ..., vk, v1) cannot be the perimeter of a hole. Hence, the
unit cycle around each v;; can contain at most 2 other nodes of the locally convex hull, which
implies that £ = O (A4). <

Hence, locally convex hulls contain a number of nodes that is independent of the total number
of nodes in the system and only depends on the area covered by the hole. A further reduction
in the number of nodes can be achieved when only looking at the convex hull of a hole.

» Lemma 17. For any cycle (vy,va, ..., vk, v1) of hole nodes in LDel? (V) with a bounding
boz (i.e., the box of minimum size containing vy, ...,vx) of circumference L, the convex hull
(Viys Vigs - - - Viy, iy) Of the cycle contains O (L) nodes.

Proof of Lemma[I7l Let B be the bounding box of the cycle and x be its center point. Let
the points w, , ..., we, be the projections of v;,, vi,, ..., v;, from 2 onto the boundary of B,

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

i.e., the points where the ray from z in the direction of v;; intersects the boundary of B. As
is easy to check, the /;-distance of w;;, and w;,,, on B is at least as large as ||v;;v;,, || for
all j. Moreover, for any 3 consecutive points u,v,w on the convex hull it must hold that
|luw]|| > 1. Hence, for any 3 consecutive points u’,v’, w’ on the projection of the convex hull
onto B it must hold that the ¢;-distance of v’ and w’ is more than 1, which implies that the
convex hull contains only O (L) nodes. <

Since a bounding box of circumference L may cover an area of size © (LZ), we may get
another significant reduction in the number of nodes when switching from a locally convex
hull to a convex hull. All in all, by considering only convex hulls of holes, we achieve a
significant reduction of the number of nodes contained in the Visibility Graph.

4.2 c-competitive Paths via Convex Hulls

In this section, we prove that considering only nodes of convex hulls of holes still allows
us to find competitive paths in the 2-localized Delaunay Graph. For the moment, let us

assume that both the source and the target of a routing request lie outside of any convex hull.

Moreover, we assume that the source and the target are not visible from each other as finding
c-competitive paths for visible nodes can be found via Chew’s Algorithm (see Section [2.2]).

» Lemma 18. The shortest path between any pair of non-visible nodes of the 2-localized
Delaunay Graph contains convex hull nodes.

Proof of Lemma([I8l Let s,t be two nodes of the 2-localized Delaunay Graph, whose direct
line segment intersects a hole. Starting from s, let ¢ be the first intersected line segment
of the boundary of the intersected convex hull with endpoints v, w. We assume that the
shortest path contains points of (v,...,w). Else, the argumentation must be repeated with
the neighboring edges of the convex hull.

By contradiction, we assume that the shortest path from s to ¢ contains a point p €
(v, ...,w) from the interior of the convex hull, i.e., excluding v, w. Without loss of generality,
we assume that the shortest path furthermore contains the point w (The same holds for v.).

Because of the triangle inequality, the following holds: ||sw]|| < ||sp|| + |[pw]|| And we know
that || (z,y) || < 1.998 - ||zy|| holds for any two nodes of a Delaunay triangulation.

Then:
| (s,w) ||
s 2 <
Toos = 5wl
< [lspll + llpw]]
<[(sp) [+ (p,w) |l
=1 (8 ey Dy ey w) ||

Hence, points of the interior of convex hulls cannot be chosen as a path along a convex hull
node would be shorter. <

Using this observation, we show that a Delaunay Graph of all convex hull nodes helps to
find competitive paths in the 2-localized Delaunay Graph. We define the Overlay Delaunay
Graph to be a Delaunay Graph that contains all convex hulls of holes and connects the nodes
of different convex hulls in a Delaunay Graph.

The following theorem is a conclusion of the so far mentioned properties:

23:11

CVIT 2016

23:12

Competitive Routing in Hybrid Communication Networks

» Theorem 19. Let s and t be two nodes of a 2-localized Delaunay Graph that do not lie
inside of any convexr hull. Further, let (s = cg,c1,...,¢i—1,c¢ = t) be the shortest path in the
Overlay Delaunay Graph via long-range links. Then we have
1. There is a (1.998 . an;lo dm) -path in the 2-localized Delaunay Graph from s to t, where
dpm, = ||emCm+1]|-
2. By applying Chew’s Algorithm, we obtain a
(5.9 . an;lo dm) -path in the 2-localized Delaunay Graph from s to t, where d,, :=

llememll-

Hence, we argue that this approach finds c-competitive paths from source s to target ¢ in the
2-localized Delaunay Graph. We will prove Theorem 1) with the following two lemmata:

» Lemma 20. Let a and b be visible nodes of different convex hulls. Then there is a
1.998 - ||ab||-spanning path between them in the 2-localized Delaunay Graph.

Proof of Lemma Since the Delaunay Graph is a 1.998-spanner of the complete Euclidean
graph [24] and the 2-localized Delaunay Graph contains all edges of the original Delaunay
Graph between a pair of visible nodes, there always exists a 1.998 - ||ab|| path between two
visible nodes a and b of two different convex hulls. This proves Lemma 20 |

» Lemma 21. Let a and b be adjacent nodes on a convexr hull, where a # b. Then there is a
1.998 - ||ab||-spanning path in the 2-localized Delaunay Graph between a and b.

Proof of Lemma [2Il We use the observation of Xia that a 2-localized Delaunay Graph is a
1.998-spanner of the Unit Disk Graph. Thus there is a 1.998-competitive path between the
to convex hull nodes. This proves Lemma |

And to prove Theorem (2), we consider the following lemmata:

» Lemma 22. Let a and b be wvisible nodes of different convexr hulls. Then there is a
5.9 - ||abl|-routing path between them in the 2-localized Delaunay Graph.

Proof of Lemma This fact follows immediately from [3] and the fact that for two visible
nodes s and ¢, their direct line segment st intersects only triangles which are also part of the
(standard) Delaunay Graph. <

» Lemma 23. Let a and b be adjacent node on a convex hull, where a # b. Then there is a
5.9 - ||labl|-routing path in the 2-localized Delaunay Graph between a and b.

Proof of Lemma[23]l The proof is the same as for Lemma 2] because two adjacent convex
hull nodes are due to the assumption of non-intersecting convex hulls per definition visible
from each other. |

Finally, we are able to prove Theorem

Proof of Theorem [19(1). Theorem([19]1) follows immediately from Lemma[20]and Lemma 21}
<

Proof of Theorem 2). Recall that there exists an online routing strategy for Delaunay
Graphs which finds a path between any source s and target ¢ with length at most 5.9 - ||st||.
Furthermore, recall that the 2-localized Delaunay Graph contains all edges of the original
Delaunay Graph between any pair of visible nodes. Thus, there is a routing strategy from
any convex hull node a to any other convex hull node b in cases a and b are nodes of different

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

convex hulls with length at most 5.9 - ||ab||. This routing strategy can be applied to route
in the 2-localized Delaunay Graph between to adjacent convex hull nodes a and b as well.
This is due to the fact, that the routing strategy chooses the path along triangles in the
2-localized Delaunay Graph that are intersected by the line from a to b. As a and b are
visible from each other, these edges would also be part of the original Delaunay Graph. Thus,
the routing strategy applied on the hybrid communication model gives a path of length at

most (5.9 . an_:lo dm). All in all, we obtain Theorem <

4.3 Routing Protocol

This section deals with our routing protocol in the convex hull scenario. Basically, we apply
the same routing protocol as described in Section [3| and instead of considering all hole nodes
we only take those hole nodes which are also part of a convex hull into account. To be precise,
however, we have to consider more detailed cases concerning the positions of s and t. To
investigate all different cases of the different geographical positions, we introduce bay areas.
A bay area H,4 of a hole consists of the nodes and edges of the 2-localized Delaunay Graph
that are inside the convex hull and between two adjacent convex hull nodes. For a visual
intuition of bay areas, we refer the reader to Figure [Il The notion of bay areas allows us to
formally describe each case we have to consider:

s and t are outside of convex hulls

s or t is inside of a convex hull

s and t are inside different convex hulls

s and t are inside the same convex hull but in different bay areas

LAl A

s and t are inside the same convex hull and in the same bay area.

Case 1 is solvable with few additional requirements to the routing protocol described in
Section [3] Cases 2 — 5, however, need a more sophisticated solution and are postponed to
Section [4.4]

For Case 1, we assume for now that the following information is available:

1. Each node located on the perimeter of a hole stores references to its two neighboring
convex hull nodes

2. All nodes lying on convex hulls of holes store an Overlay Delaunay Graph of all convex
hull nodes

The concrete routing protocol for Case 1 works exactly as described in Section [3] A
node s sends its message via Chew’s Algorithm into the direction of ¢. In case the message
arrives at a hole node, it is directed to a convex hull node. The convex hull node inserts ¢
into its Visibility Graph and applies a shortest path algorithm. The resulting path is added
to the message and used for forwarding the message in the ad hoc network. Between any
pair of nodes on the received path, Chew’s Algorithm is applied. Based on the results from
Section we obtain a c-competitive path in LDel?(V).

4.4 Limitations of Convex Hulls

The routing algorithm of Section produces c-competitive paths between any pairs (s, 1),
where the geographical coordinates of s and t are outside of convex hulls (Case 1). In this
section, we concentrate on routing from s to ¢, when their geographical coordinates fulfill the
properties of Cases 2-5. Here, we only provide the routing algorithm, where both s and ¢ are

23:13

CVIT 2016

23:14

Competitive Routing in Hybrid Communication Networks

in the same bay area, i.e., Case 5. It will be easy to see that an analogous routing can be
executed for Cases 2-4.

For computing c-competitive paths, we assume that a dominating set of all hole nodes in this
bay area is known to each of these hole nodes. A dominating set DS of a graph G = (V, E)
is a subset of V' such that every node not in DS is adjacent to at least one node of DS. To
calculate DS, we refer to Section [5.6

Recall that st denotes the direct line segment between s and ¢. We define S to be the
first intersection point between st and the hole boundary, from the direction of s. Let T be
the analogous intersection point from the direction of ¢. Let P; be the dominating set node
with the shortest hop distance on the hole boundary to S and P, the analogous dominating
set node to 7. We denote H,; to be the set of all hole nodes that are located in this bay
area between P; and P;. We call the nodes of the convex hull of this set the extreme points
{F1, ..., Ex}. We define E; to be the extreme point with the smallest index, where E,tis
visible to ¢.

The routing strategy works as follows:

s executes Chew’s Algorithm to send the message m in the direction of ¢ until m either
arrives at t (i.e., s and ¢ are visible to each other) or at P;. If it reaches P;, then m is routed
from P; to F4, from E; to Es,..., from E; to Fy, for i = 1,...,t. Finally m is routed from
E; to t. All these routing steps are done with Chew’s Algorithm.

Because Chew’s Algorithm is 5.9-competitive and the provided path by the algorithm contains
in total 2 + |E,oute| direct lines, where |E,oyute| denotes the number of extreme points that
we route to, it is easy to see:

» Lemma 24. Let s and t be nodes with geographic coordinates in the same bay area, then
the routing algorithm above provides a c-competitive routing path between s and t with
¢ = (24 |Eroute]) - 5.9.

5 Concrete Protocol

This section deals with collecting all information needed for the protocols described in
Sections [3]and [in a distributed manner. The following issues have to be discussed:

Distributed Construction of the 2-localized Delaunay Graph

Hole Detection

Distributed computation of convex hulls

Distribution of convex hull information to compute an Overlay Delaunay Graph

aORrwbdH=

Computation and Distribution of the Dominating Set of the hole ring in each bay area

After points 1 — 5 are solved, we are able to apply the routing strategies of Sections
and [and obtain c-competitive paths in a completely distributed fashion.
The rest of the section is structured as follows: Section .1l deals with the distributed
construction of 2-localized Delaunay Graph. Afterwards, we describe a preprocessing strategy
for the convex hull protocol, which transforms a ring of nodes into a hypercube. The
hypercube protocol is introduced in Section Section [5.3] introduces a protocol that
computes convex hulls of all holes. We continue with discussing hole detection, i.e., how
nodes can detect if they are hole nodes in Section Subsequently, the protocol for the
distribution of convex hull information is introduced in Section B8l Section [5.6] deals with
the computation of a Dominating Set along the hole ring in each bay area.

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

5.1 Ad Hoc Network Construction

In the following, we discuss the distributed construction of a 2-localized Delaunay Graph.

For the 2-localized Delaunay Graph, we use the distributed protocol described in [15]. In
their work, it is assumed that an initial (connected) Unit Disk Graph of all ad hoc links
is given. This can be trivially achieved if every node executes a WiFi-broadcast within its
transmission range in a short setup-phase. Afterwards, each node is aware of all nodes in its
transmission range and we obtain a Unit Disk Graph. As we cannot solve path finding in
unconnected Unit Disk Graphs, we assume that the initial Unit Disk Graph is connected.
After all Unit Disk-links are known, the nodes execute the protocol of Li et al. which requires
communication costs of O (nlogn) bits and only O(1) communication rounds [15]. The
result is, to be precise, not a 2-localized Delaunay Graph but a supergraph of it called Planar
Localized Delaunay Graph. As each edge has a length of at most 1 and the Planar Localized
Delaunay Graph is a planar graph, our ideas of hole detection also work for these type of
graphs. For convenience, we restrict ourselves to 2-localized Delaunay Graphs in the rest of
this section.

5.2 Hypercube Protocol for a Ring of Nodes

In this section, we describe a procedure that establishes a hypercube topology out of a ring

with k& nodes. On the one hand, this protocol is a prerequisite for the convex hull protocol.

On the other hand, this protocol allows a fast hole detection, i.e., enables nodes to quickly
distinguish the outer boundary from a hole. More precisely, we execute the protocol both
for holes and the outer boundary of the entire node set which are both connected in a ring
topology. For the ease of notation, we summarize nodes of the outer boundary and hole
nodes as boundary nodes. Note that each node can locally detect whether it part of an inner
or outer hole by checking whether it is part of a triangle with a missing edge due to the
restriction of the edge length (see Definition . Each node v which is part of the convex
hull of the entire node set detects that there are two consecutive neighbors v and w in the
clockwise ordering of v’s neighbors such that Z (u, v, w) > 180°.

Initially, each boundary node chooses a successor and a predecessor in each ring. This can be
achieved as follows: Each boundary node sorts its boundary neighbors clockwise. Afterwards,
for every pair of consecutive nodes in the sorting (also for the last and the first node) the
first node is chosen as predecessor and the second node is chosen as successor. Now, every
boundary is either oriented clockwise or counterclockwise. More precisely, the outer boundary
is oriented clockwise and each hole is oriented counterclockwise. The orientation, however, is
not important for the hypercube protocol but for the hole detection in Section

We proceed with the hypercube protocol by giving a definition of a hypercube.

» Definition 25. A d-dimensional hypercube consists of n nodes, where n = 2¢, such that
each node has a unique bitstring (z1,...,z4) € {0,1}% and there is an edge between two
nodes if and only if their bitstring differs in only one bit. The decimal representation of a
bitstring of a node h is denoted as id(v).

For simplicity, we assume the number of nodes in the ring to be a power of two. However,
the techniques can be applied for an arbitrary number of nodes with a slight modification of
the given protocol. For the construction of the hypercube we use pointer jumping. On the one
hand, this technique enables us to build overlay edges for the hypercube fast and additionally
it allows us to elect a leader in O(logk) communication rounds which is responsible for

23:15

CVIT 2016

23:16

Competitive Routing in Hybrid Communication Networks

setting up the hypercube IDs. The leader of the ring is the node with minimal ID. The ID of
a node v is denoted as id,. In addition, we assign two values to each edge e = {u, v}, which
is created by the pointer jumping protocol. The first one, ¢(e) defines the minimal ID of all
ring nodes which are bridged by e, except id,,. The second value, level(e) = log(b), where b
denotes the number of ring nodes between u and v.

The pointer jumping is used as follows: Let v be a node of the hole ring and let predy be its
predecessor and succy its successor on the ring. In round 1 of the protocol, v introduces succy
to predy to each other. Thus succy and predy become adjacent nodes and an overlay edge
e = {predy, succy } is established. Further, v assigns £(e) = min{id,, idsycc, } and level(e) = 0.
As each node executes the protocol, v also gets introduced two nodes in round 1 which are
denoted as pred; and succy. In particular, in round 4, each node v of the hole ring introduces
its predecessor pred;_1 to its successor succ;—; and gets introduced pred; and succ;. The
node v that introduces pred;_, and succ;_1 to each other also assigns ¢({pred;_1, succ;—1}) =
min{{({pred;_1,v}),{({v, succ;_1})} and level(e) = level({pred;_1,v}) + 1.

With pointer jumping, the hop distance between any pair of nodes halves from round to
round. The protocol stops in a round ¢ in which v gets introduced succ; and pred; and
L({pred;,v}) = £({v, succ;}). At that point, each node (especially the leader itself) is locally
aware of the minimal ID and hence knows the ID of the leader. As the distance between any
pair of nodes halves from round to round, this protocol requires O(log k) communication
rounds. For the purpose of being able to emulate a hypercube, we do not only need the
additional overlay edges, but also hypercube IDs. Recall that the node IDs of the hypercube
are bitstrings of length log k. To distribute the hypercube IDs to the corresponding boundary
nodes, the leader v assigns for each hypercube edge {v, suce;} the binary representation of
level({v, succ; })+1 as ID to suce;. Each node that receives an ID from the leader repeats the
ID distribution recursively, relative to its own ID. As the diameter of a hypercube of k nodes
is O(log k), the distribution of IDs requires O(log k) communication rounds. Eventually, the
nodes of the ring form a hypercube and we are able to apply every protocol designed for
hypercubes.

We summarize the results of this section in the following lemma:

» Lemma 26. A ring of k nodes can be transformed into a hypercube in O(logk) commu-
nication rounds. The number of required messages is in O(logk) per node.

5.3 Convex Hull Computation

In the previous section, we presented the protocol to establish the hypercube of a ring of
nodes. We proceed with introducing a protocol that computes a convex hull of a ring of
nodes that uses the hypercube protocol as a subroutine. For the convex hulls, we make use
of the parallel algorithm of Miller which has been designed for hypercubes [I7]. The protocol
requires n sorted points. More precisely, for hypercube nodes hy and ho with id(hy) < id(h2),
hi has to store a node of the ad hoc network with smaller ID than the node of the ad hoc
network which is stored by hs.

First, we apply the hypercube protocol of Section [5.2]and sort the points afterwards. Sorting
n points in a hypercube can be done in O(logn) communication rounds on expectation with
the algorithm of Reif and Valiant [2I]. Upon termination, Miller’s algorithm is applied which
ensures that each node of the ring knows every convex hull node and especially each convex
hull node identifies itself as a convex hull node. The following theorem follows:

» Theorem 27. Given a hole ring with k modes, the convex hull of this hole ring can be
caleulated in O(logk) communication rounds on expectation.

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

5.4 Hole Detection

In Section [5.2] we have seen how to orient the cycle of nodes along the outer boundary
clockwise and the ring of each hole counterclockwise. However, boundary nodes locally
cannot detect whether these cycles are oriented clockwise or counterclockwise and hence
cannot decide whether they are located on the outer boundary or on a hole. The idea to
let nodes distinguish these cases is to sum up angles along each boundary into the direction
of the orientation. Let v1,vs be a predecessor and a successor along a boundary. In case
walking from vy to vy requires a left turn, the angle between v; and vs is subtracted from
the current sum. Angles of right turns are added. The result would be 360° for the outer
boundary and —360° for each hole [7].

The summation along a boundary could be done by a token passing technique initiated by a
leader. This technique, however, requires a linear number of communication rounds for each
cycle. To improve the runtime, we sum angles in parallel to the hypercube protocol. in the
following way: In addition to the minimal ID, we also exchange the sum of angles with each
edge of the pointer jumping procedure. At the end, every node of the ring knows the sum
of all angles along the boundary. Hence, each node can decide whether it is a hole node in
O(logn) communication rounds.

For determining outer holes, we need a second run of convex hull computations along the
outer boundary. Note that outer holes are defined by an edge of the outer convex hull of the
point set (see Definition . After the convex hull of the outer boundary has been computed,
a second run is started between every pair of consecutive convex hull nodes whose distance
exceeds the transmission range of a node. All in all, we compute the convex hull of each
hole and of the outer boundary to be able to distinguish the outer boundary and holes.
Afterwards we start a second run of convex hull computations for each outer hole determined
by the convex hull of the outer boundary from the first run. Finally, we have computed the
convex hull of each hole in the network.

5.5 Convex Hull Distribution

In this section, we describe a strategy guaranteeing that all convex hull nodes are eventually
connected in a clique via long-range links such that each convex hull node is locally able
to compute an Overlay Delaunay Graph (see Section . The main observation of this
section is that nodes of a convex hull locally cannot decide in which directions other holes
are located (or even the existence of other holes). Hence, we need to spread the information
about convex hulls in the entire network. A naive approach is to use a broadcast technique
in which every convex hull node broadcasts itself together with the nodes which also belong
to its convex hull in the network. The runtime is limited by the diameter of the network
(regarding hop-distance) which can be © (n) in 2-localized Delaunay Graphs. To achieve a
faster distribution of broadcasts, we use an additional Overlay Network via the long-range
links which only has a logarithmic diameter. For doing so, we make use of a recently
developed distributed protocol by Gmyr et al. which is designed for Hybrid Communication
Networks [9]. The protocol ensures that all nodes of the network are connected in a rooted
tree via long-range links after O(log®n) communication rounds. The tree has a height of
O(logn) and a constant degree. Consequently, the diameter of the tree is O(logn). As the
diameter is only logarithmic, the tree allows us to distribute references of convex hull nodes
in O(logn) communication rounds in the following way: Each convex hull node can direct
its own reference both towards the root and into the subtree below itself. The root redirects
the reference into every other subtree. This procedure avoids that nodes receive the same

23:17

CVIT 2016

23:18

Competitive Routing in Hybrid Communication Networks

broadcast message multiple times. The total runtime of this step is (9(log2 n) as the tree has
to be established initially.

So far, we have seen, that the 2-localized Delaunay Graph, convex hulls of nodes and also the
distribution of convex hull information can be achieved efficiently in O(log” n) communication
rounds which is dominated by the preprocessing protocol for the rooted tree. The only part
we left open until now is the routing protocol for nodes located in the same bay area. The
following Section deals with this problem.

5.6 Dominating Set Protocol

In cases where both the source and the target node of a routing request are located in
the same bay area of a hole, we have seen that a Dominating Set of the hole ring in that
particular bay area helps to find c-competitive paths (see Section |4.4)).

The computation of a smallest possible dominating set, however, is proven to be NP-
complete. In this paper, we make use of the distributed dominating set protocol by Jia et
al. which achieves a O(log A)-approximation of the smallest possible dominating set with
high probability. The parameter A denotes the degree of the network. As we are computing
dominating sets for hole rings in a bay area, A = 2 in our scenario. The protocol needs
O(logn -log A) communication rounds with high probability. Hence, we are able to compute
a constant approximation of the smallest possible dominating set of a hole ring in a bay
area in O(logn) communication rounds with high probability. We only have to take care
that the protocol does not involve nodes of different bay areas. However, convex hull nodes
know that they are part of two bay areas and can take part in each dominating set protocol
independently by only considering the neighbor of each particular bay area.

6 Dynamic Scenario

In a real-world scenario with an Hybrid Communication Network consisting of smartphones,
our assumption of immobile nodes is rather unrealistic. In this section, we allow participants
to move in each timestep while keeping the Unit Disk Graph connected. Once the Overlay
tree for fast exchange of convex hull information is built (see Section [5.5)), we can obtain new
convex hull information in only O(logn) communication rounds. As long as nodes do not
leave and join the network, the Overlay tree remains valid as its structure does not depend
on the position of the nodes. Hence, the dominating runtime of (’)(log2 n) communication
rounds for the tree is only required in an initial setup. Therefore, a periodical re-execution of
all protocols except the protocol for the distributed Overlay tree allows us to find competitive
paths in a scenario where nodes are allowed to change their positions.

7 Conclusion and Future Work

In this paper, we investigated a Hybrid Communication Network consisting of a wireless
ad hoc network, i.e., a 2-localized Delaunay Graph, and an Overlay Network built via long-
range links for the purpose of finding c-competitive paths in the ad hoc network in O(logn)
communication rounds. Due to radio holes in the wireless ad hoc network, online routing
strategies perform poor with respect to length of paths. Therefore, we considered an Overlay
Delaunay Graph consisting of the nodes of convex hulls of each radio hole. We proved that
knowledge about convex hulls suffices to find c-competitive paths in the 2-localized Delaunay
Graph. Furthermore, we developed distributed protocols that detect holes in the ad hoc
network, compute the convex hulls of each hole and distribute the information about convex

D. Jung, C. Kolb, C. Scheideler and J. Sundermeier

hulls in the network such that each convex hull node locally stores an Overlay Delaunay
Graph. The Overlay Delaunay Graph enables convex hull nodes to compute competitive
paths between nodes in the ad hoc network. We proved that the total runtime of our protocols
is O(log® n) communication rounds. When considering a dynamic scenario in which nodes
are allowed to change their positions, we need (9(10g2 n) communication rounds for an initial
setup but afterwards we are able to recompute the entire Overlay Network in only O(logn)
communication rounds. Hence, our protocols are able to handle a dynamic scenario very
efficiently.

Moreover, there are several challenging aspects which can be investigated in future research.
In this paper, we considered non-intersecting convex hulls. The natural next step could be
the design of routing strategies that can deal with finding competitive paths in areas of
intersecting convex hulls. Besides, we concluded our paper with a dynamic scenario in which
nodes are allowed to move. Our solution is to periodically recompute the entire Overlay
Network. This might not always be the best solution as usually nodes do not move arbitrarily
fast. Hence, a model with bounded movement speed could be investigated in which only
parts of the Overlay Network have to be recomputed. A further dynamic which could be
considered, is joining and leaving nodes. Lastly, our model does not tackle physical aspects of
wireless communication. Interesting aspects are for example wireless interference in crowded
areas. Also the signal power of wireless rays can be integrated into our theoretical model.

—— References

1 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA,
3rd edition, 2008.

2 H. E. Bez and J. Edwards. Distributed Algorithm for the Planar Convex Hull Problem.
Computer-Aided Design, 22(2):81-86, 1990.

3 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perkovic, and André
van Renssen. Upper and Lower Bounds for Online Routing on Delaunay Triangulations.
Discrete & Computational Geometry, 58(2):482-504, 2017.

4 Prosenjit Bose, Andrej Brodnik, Svante Carlsson, Erik D. Demaine, Rudolf Fleischer, Ale-
jandro Lépez-Ortiz, Pat Morin, and J. Ian Munro. Online routing in convex subdivisions.
In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, D. T. Lee, and Shang-Hua Teng, ed-
itors, Algorithms and Computation, pages 47-59, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

5 Prosenjit Bose, Matias Korman, André van Renssen, and Sander Verdonschot. Constrained
routing between non-visible vertices. In Yixin Cao and Jianer Chen, editors, Computing
and Combinatorics, pages 62-74, Cham, 2017. Springer International Publishing.

6 G. Cena, A. Valenzano, and S. Vitturi. Hybrid wired/wireless Networks for real-time
Communications. IEEE Industrial Electronics Magazine, 2(1):8-20, March 2008.

7 Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Improved leader election for self-organizing programmable matter. In Anto-
nio Fernandez Anta, Tomasz Jurdzinski, Miguel A. Mosteiro, and Yanyong Zhang, editors,
Algorithms for Sensor Systems, pages 127-140, Cham, 2017. Springer International Pub-
lishing.

8 Boris Delaunay. Sur la sphere vide. A la Mémoire de Georges Voronoi. Bulletin de
l’Académie des Sciences de I’'URSS, 6:793-800, 1934.

9 Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler. Distributed
Monitoring of Network Properties: The Power of Hybrid Networks. In Ioannis Chatzigianna-
kis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloguium

23:19

CVIT 2016

23:20

Competitive Routing in Hybrid Communication Networks

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 137:1-137:15, Dagstuhl, Germany, 2017.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Anuj K Gupta, Harsh Sadawarti, and Anil K Verma. Review of various routing protocols
for manets. International Journal of Information and Electronics Engineering, 1(3):251,
2011.

Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An Efficient Distributed Algorithm
for Constructing Small Dominating Sets. Distributed Computing, 15(4):193-205, 2002.
Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Asymptotically optimal geomet-
ric mobile ad-hoc routing. In Proceedings of the 6th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, DIALM ’02, pages
24-33, New York, NY, USA, 2002. ACM.

Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Worst-Case Optimal and Average-
case Efficient Geometric Ad-hoc Routing. In Proceedings of the Jth ACM International
Symposium on Mobile Ad Hoc Networking €Amp; Computing, MobiHoc ’03, pages 267—
278, New York, NY, USA, 2003. ACM.

S. Li, W. Zeng, D. Zhou, X. Gu, and J. Gao. Compact conformal map for greedy routing
in wireless mobile sensor networks. IEEE Transactions on Mobile Computing, 15(7):1632—
1646, July 2016.

Xiang-Yang Li, G. Calinescu, and Peng-Jun Wan. Distributed Construction of a Planar
Spanner and Routing for Ad Hoc Wireless Networks. In Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and Communications Societies, volume 3, pages
1268-1277 vol.3, New York, NY, USA, 2002. IEEE Press.

Vladimir J Lumelsky. Algorithmic and Complexity Issues of Robot Motion in an Uncertain
Environment. Journal of Complexity, 3(2):146-182, 1987.

R. Miller and Q. F. Stout. Efficient Parallel Convex Hull Algorithms. IEEE Transactions
on Computers, 37(12):1605-1618, Dec 1988.

Y. S. N. Murty. Hybrid Communication Networks for Power Utilities. In Power Quality
’98, pages 239242, New York, NY, USA, Jun 1998. IEEE press.

Sergio Rajsbaum and Jorge Urrutia. Some Problems in Distributed Computational Geo-
metry. Theoretical Computer Science, 412(41):5760-5770, 2011.

Nagewara SV Rao, Srikumar Kareti, Weimin Shi, and S Sitharama Iyengar. Robot Nav-
igation in Unknown Terrains: Introductory Survey of non-heuristic Algorithms. Technical
report, Oak Ridge National Lab., TN (United States), 1993.

John H. Reif and Leslie G. Valiant. A Logarithmic Time Sort for Linear Size Networks.
Journal of the ACM (JACM), 34(1):60-76, January 1987.

Stefan Rithrup and Christian Schindelhauer. Online multi-path routing in a maze. In
Tetsuo Asano, editor, Algorithms and Computation, pages 650-659, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

James Christopher Wyllie. The Complexity of Parallel Computations. PhD thesis, Ithaca,
NY, USA, 1979.

Ge Xia. The Stretch Factor of the Delaunay Triangulation is less than 1.998. STAM Journal
on Computing, 42(4):1620-1659, 2013.

	1 Introduction
	1.1 Model
	1.2 Objective
	1.3 Our Contributions
	1.4 Related Work

	2 Preliminaries
	2.1 Spanner-Properties of the Ad Hoc Network
	2.2 Online Routing in 2-localized Delaunay Graphs

	3 General Routing Protocol
	4 Routing Protocol for Convex Hulls as Hole Abstractions
	4.1 Space Reduction
	4.2 c-competitive Paths via Convex Hulls
	4.3 Routing Protocol
	4.4 Limitations of Convex Hulls

	5 Concrete Protocol
	5.1 Ad Hoc Network Construction
	5.2 Hypercube Protocol for a Ring of Nodes
	5.3 Convex Hull Computation
	5.4 Hole Detection
	5.5 Convex Hull Distribution
	5.6 Dominating Set Protocol

	6 Dynamic Scenario
	7 Conclusion and Future Work

