Skip to main content

On the Maximum Connectivity Improvement Problem

  • Conference paper
  • First Online:
Book cover Algorithms for Sensor Systems (ALGOSENSORS 2018)

Abstract

In this paper, we define a new problem called the Maximum Connectivity Improvement (MCI) problem: given a directed graph \(G = (V,E)\), a weight function \(w:V \rightarrow \mathbb {N}_{\ge 0}\), a profit function \(p:V \rightarrow \mathbb {N}_{\ge 0}\), and an integer B, find a set S of at most B edges not in E that maximises \(f(S)=\sum _{v\in V}w_v\cdot p(R(v,S))\), where p(R(vS)) is the sum of the profits of the nodes reachable from node v when the edges in S are added to G. We first show that we can focus on Directed Acyclic Graphs (DAG) without loss of generality. We prove that the MCI problem on DAG is \( NP \)-Hard to approximate to within a factor greater than \(1-1/e\) even if we restrict to graphs with a single source or a single sink, and MCI remains \( NP \)-Complete if we further restrict to unitary weights. We devise a polynomial time algorithm based on dynamic programming to solve the MCI problem on trees with a single source. We propose a polynomial time greedy algorithm that guarantees \((1-1/e)\)-approximation ratio on DAGs with a single source or a single sink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a ground set N, a function \(z:2^N\rightarrow \mathbb {R}\) is submodular if for any pair of sets \(S\subseteq T \subseteq N\) and for any element \(e\in N\setminus T\), \(z(S\cup \{e\}) - z(S) \ge z(T\cup \{e\}) - z(T)\).

References

  1. Avrachenkov, K., Litvak, N.: The effect of new links on Google PageRank. Stoc. Models 22(2), 319–331 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cordasco, G., et al.: Whom to befriend to influence people. CoRR abs/1611.08687 (2016). http://arxiv.org/abs/1611.08687

  3. Crescenzi, P., D’Angelo, G., Severini, L., Velaj, Y.: Greedily improving our own centrality in a network. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 43–55. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20086-6_4

    Chapter  Google Scholar 

  4. Crescenzi, P., D’Angelo, G., Severini, L., Velaj, Y.: Greedily improving our own closeness centrality in a network. TKDD 11(1), 9:1–9:32 (2016)

    Article  Google Scholar 

  5. D’Angelo, G., Severini, L., Velaj, Y.: Selecting nodes and buying links to maximize the information diffusion in a network. In: 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, LIPIcs, vol. 83, pp. 75:1–75:14 (2017)

    Google Scholar 

  6. Demaine, E.D., Zadimoghaddam, M.: Minimizing the diameter of a network using shortcut edges. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 420–431. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13731-0_39

    Chapter  Google Scholar 

  7. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4), 653–665 (1976)

    Article  MathSciNet  Google Scholar 

  8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  10. Ishakian, V., Erdös, D., Terzi, E., Bestavros, A.: A framework for the evaluation and management of network centrality. In: Proceedings of the 12th SIAM International Conference on Data Mining (SDM), pp. 427–438. SIAM (2012)

    Google Scholar 

  11. Meyerson, A., Tagiku, B.: Minimizing average shortest path distances via shortcut edge addition. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 272–285. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03685-9_21

    Chapter  Google Scholar 

  12. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  13. Olsen, M., Viglas, A.: On the approximability of the link building problem. Theor. Comput. Sci. 518, 96–116 (2014)

    Article  MathSciNet  Google Scholar 

  14. Papagelis, M.: Refining social graph connectivity via shortcut edge addition. ACM Trans. Knowl. Discovery Data (TKDD) 10(2), 12 (2015)

    Google Scholar 

  15. Tamir, A.: An o\((pn^2)\). algorithm for the p-median and related problems on tree graphs. Oper. Res. Lett. 19(2), 59–64 (1996)

    Article  MathSciNet  Google Scholar 

  16. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Corò .

Editor information

Editors and Affiliations

Appendices

Appendix 1.A Omitted Proofs

Lemma 3

Given a graph G and its condensation \(G'\), it yields: \(f(G')=f(G)\).

Proof

First, consider two nodes u and v that belong to the same strongly connected component \(C_{v'}\) in \(G'\). Clearly, \(R(u,G)=R(v,G)\).

Moreover, it holds \(p(R(v,G))=p(R(v',G'))\) because \(R(v',G')\) contains one node for each different strongly connected component in R(uG) and thus:

$$p(R(v',G'))=\sum _{u' \in R(v', G')} p_{u'}=\sum _{u' \in R(v', G')} \sum _{u \in C_{u'}} p(u)= \sum _{u \in R(v,G)} p(u)=p(R(v,G))$$

Denoted \(C_{v'}\) the strongly connected component represented by \(v'\), we have:

$$\begin{aligned} f(G')&= \sum _{\mathbf{v'} \in V'} w_\mathbf{{v'}} p(R(\mathbf{v'},G'))\\&= \sum _{\mathbf{v'} \in V'} w_{\mathbf{v'}} \left( \sum _{u' \in R(\mathbf{v'}, G')} \sum _{u \in C_{u'}} p(u) \right) \\&= \sum _{\mathbf{v'} : C_{\mathbf{v'}} \in \mathcal {C}} w_{\mathbf{v'}} \left( \sum _{u' \in R(\mathbf{v'}, G')} \sum _{u \in C_{u'}} p(u) \right) \\&= \sum _{\mathbf{v'} : C_{\mathbf{v'}} \in \mathcal {C}} \left( \sum _{v \in C_{\mathbf{v'}}} w_v \right) \left( \sum _{u' \in R(\mathbf{v'}, G')} \sum _{u \in C_{u'}} p(u) \right) \\&= \sum _{\mathbf{v'} : C_{v'} \in \mathcal {C}} \sum _{v \in C_{\mathbf{v'}}} \left( w_v \left( \sum _{u' \in R(\mathbf{v'}, G')} \sum _{u \in C_{u'}} p(u) \right) \right) \\&= \sum _{\mathbf{v'} : C_{\mathbf{v'}} \in \mathcal {C}} \sum _{v \in C_{\mathbf{v'}}} \left( w_v \sum _{u \in R(v,G)} p(u) \right) \\&= \sum _{\mathbf{v'} : C_{\mathbf{v'}} \in \mathcal {C}} \sum _{v \in C_{\mathbf{v'}}} w_v p(R(v,G))\\&= \sum _{v \in V} w_v p(R(v, G)) = f(G) \end{aligned}$$

   \(\square \)

Appendix 1.B Omitted Images

Fig. 2.
figure 2

Example of Algorithm 1. Consider the node c with \(w_c=2\), \(p_v=1\;\forall v\in V\) and \(B=2\). We have: \(g(d, 2) = 19\), \(g(d, 1) = 12\), \(g(e, 1) = 7+2(6)=19\). Therefore \(g(c, 2) = g(e, 1) + g(d, 1) + w_c \cdot (p(T(r)) - p(T(v)))= 35\).

Appendix 1.C Generic Trees Algorithm

Given a generic rooted tree \(T=(V,E)\), let us transform it into a rooted binary tree \(T'=(V\cup U, E')\) with weights \(w', p'\) by adding dummy nodes U as follows:

  1. 1.

    Let the root r of T be the root of \(T'\).

  2. 2.

    For each non-leaf node v, let \(v_1, v_2, \ldots v_{l}\) be the children of v:

    1. (a)

      Add edge \((v,v_1)\) to \(E'\);

    2. (b)

      If \(l=2\) add \((v,v_2)\) to \(E'\);

    3. (c)

      If \(l>2\), add \(l-2\) dummy nodes \(u_{v_2}, u_{v_3}, \ldots , u_{v_{l-2}}, u_{v_{l-1}}\)

    4. (d)

      Add edge \((v,u_{v_2})\) and edges \((u_{v_i}, u_{v_{i+1}})\) to \(E'\), for each \(2 \le i \le l-2\);

    5. (e)

      Add edge \((u_{v_i},v_i)\) to \(E'\), for each \(2 \le i \le l-1\);

    6. (f)

      If \(l>2\), add edge \((u_{i_{l-1}},v_l)\) to \(E'\).

  3. 3.

    If \(v\in V\), then \(w'_v=w_v\), otherwise \(w'_v=0\) and \(p'_v=p_v\), otherwise \(p'_v=0\).

See Fig. 3 for an example of the transformation.

Fig. 3.
figure 3

Example of transformation from general tree to binary tree

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corò, F., D’Angelo, G., Pinotti, C.M. (2019). On the Maximum Connectivity Improvement Problem. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2018. Lecture Notes in Computer Science(), vol 11410. Springer, Cham. https://doi.org/10.1007/978-3-030-14094-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14094-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14093-9

  • Online ISBN: 978-3-030-14094-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics