Skip to main content

A Hybridization of Sine Cosine Algorithm with Steady State Genetic Algorithm for Engineering Design Problems

  • Conference paper
  • First Online:
Book cover The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019) (AMLTA 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 921))

Abstract

Sine Cosine Algorithm (SCA), a newly proposed optimization approach, has gained the interest of researchers to solve the optimization problems in different fields due to its efficiency and simplicity. As well as a genetic algorithm (GA) has proved its robustness in solving a large variety of complex optimization problems. In this paper, a hybridization of SCA with steady state genetic algorithm (SSGA) is proposed to solve engineering design problems. This approach integrates the merits of exploration capability of SCA and exploitation capability of SSGA to avoid exposure to early convergence, speed up the search process and quick the convergence to best results in a reasonable time. The proposed approach incorporates concepts from SSGA and SCA and generates individuals in a new generation by crossover and mutation operations of SSGA and also by mechanisms of SCA. Efficiency of the proposed algorithm is evaluated using two complex engineering design problems to verify its validity and reliability. Results show that the proposed approach has superior performance compared to other optimizations techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, Hoboken (2009)

    Google Scholar 

  2. Yang, X.S., Hossein Gandomi, A.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)

    Google Scholar 

  3. Rizk-Allah, R.M.: Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J. Comput. Des. Eng. 5(2), 249–273 (2018)

    MathSciNet  Google Scholar 

  4. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theor. Comput. Syst. 39(4), 525–544 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1975)

    MATH  Google Scholar 

  6. He, B., Che, L., Liu, C.: Novel hybrid shuffled frog leaping and differential evolution algorithm. Jisuanji Gongcheng yu Yingyong (Comput. Eng. Appl.) 47(18), 4–8 (2011)

    Google Scholar 

  7. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: 1995 Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE, October 1995‏

    Google Scholar 

  8. Lenin, K., Reddy, B.R., Kalavathi, M.S.: Modified monkey optimization algorithm for solving optimal reactive power dispatch problem. Indones. J. Electr. Eng. Inform. (IJEEI) 3(2), 55–62 (2015)

    Google Scholar 

  9. Zhou, Y., Wang, J., Gao, S., Yang, X., Yin, J.: Improving artificial bee colony algorithm with historical archive. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds.) Bio-Inspired Computing-Theories and Applications, pp. 185–190. Springer, Singapore (2016)

    Google Scholar 

  10. Xu, H., Liu, X., Su, J.: An improved grey wolf optimizer algorithm integrated with cuckoo Search. In: 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 1, pp. 490–493. IEEE, September 2017‏

    Google Scholar 

  11. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Google Scholar 

  12. Monteiro-Filho, J.B., Albuquerque, I.M.C., Neto, F.L.: Fish School Search Algorithm for Constrained Optimization. arXiv preprint arXiv:1707.06169 (2017)

  13. Mirjalili, S., Mirjalili, S.M., Yang, X.S.: Binary bat algorithm. Neural Comput. Appl. 25(3–4), 663–681 (2014)

    Google Scholar 

  14. Wang, H., Wang, W., Sun, H., Cui, Z., Rahnamayan, S., Zeng, S.: A new cuckoo search algorithm with hybrid strategies for flow shop scheduling problems. Soft. Comput. 21(15), 4297–4307 (2017)

    Google Scholar 

  15. Hoos, H.H., Stützle, T.: Stochastic local search: Foundations and applications. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  16. Mousa, A.A., El-Shorbagy, M.A., Farag, M.A.: K-means-clustering based evolutionary algorithm for multi-objective resource allocation problems. Appl. Math 11(6), 1681–1692 (2017)

    MathSciNet  Google Scholar 

  17. Farag, M.A., El-Shorbagy, M.A., El-Desoky, I.M., El-Sawy, A.A., Mousa, A.A.: Binary-real coded genetic algorithm based k-Means clustering for unit commitment problem. Appl. Math. 6(11), 1873 (2015)

    Google Scholar 

  18. Hussein, M.A., EL-Sawy, A.A., Zaki, E.S.M., Mousa, A.A.: Genetic algorithm and rough sets based hybrid approach for economic environmental dispatch of power systems. Br. J. Math. Comput. Sci. 4(20), 2978 (2014)

    Google Scholar 

  19. Renner, G., Ekárt, A.: Genetic algorithms in computer aided design. Comput. Aided Des. 35(8), 709–726 (2003)

    Google Scholar 

  20. Iqbal, S., Hoque, M.T.: hGRGA: a scalable genetic algorithm using homologous gene schema replacement. Swarm Evol. Comput. 34, 33–49 (2017)

    Google Scholar 

  21. Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178(23), 4421–4433 (2008)

    Google Scholar 

  22. Farag, M.A., El-Shorbagy, M.A., El-Desoky, I.M., El-Sawy, A.A., Mousa, A.A.: Genetic algorithm based on k-means-clustering technique for multi-objective resource allocation problems. Br. J. Math. Comput. Sci. 8(1), 80–96 (2015)

    Google Scholar 

  23. Elattar, E.E.: A hybrid genetic algorithm and bacterial foraging approach for dynamic economic dispatch problem. Int. J. Electr. Power Energy Syst. 69, 18–26 (2015)

    Google Scholar 

  24. Altiparmak, F., Gen, M., Lin, L., Karaoglan, I.: A steady-state genetic algorithm for multi-product supply chain network design. Comput. Ind. Eng. 56(2), 521–537 (2009)

    Google Scholar 

  25. Nenavath, H., Jatoth, R. K., Das, S.: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking. Swarm and Evolutionary Computation (2018)‏

    Google Scholar 

  26. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Optimization, vol. 7. Wiley, Hoboken (2000)

    Google Scholar 

  27. Martorell, S., Carlos, S., Sanchez, A., Serradell, V.: Constrained optimization of test intervals using a steady-state genetic algorithm. Reliab. Eng. Syst. Saf. 67(3), 215–232 (2000)

    Google Scholar 

  28. Ekiz, S.: Solving constrained optimization problems with sine-cosine algorithm. Period. Eng. Nat. Sci. (PEN) 5(3), 378–386 (2017)

    MathSciNet  Google Scholar 

  29. Osman, M.S., Abo-Sinna, M.A., Mousa, A.A.: A solution to the optimal power flow using genetic algorithm. Appl. Math. Comput. 155(2), 391–405 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Mousa, A.A., Kotb, K.A.: A hybrid optimization technique coupling an evolutionary and a local search algorithm for economic emission load dispatch problem. Appl. Math. 2(07), 890 (2011)

    MathSciNet  Google Scholar 

  31. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers 29(1), 17–35 (2013)

    Google Scholar 

  32. Brajević, I., Ignjatović, J.: An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems. J. Intell. Manuf. 1–30 (2018)

    Google Scholar 

  33. Ferreira, M.P., Rocha, M.L., Neto, A.J.S., Sacco, W.F.: A constrained ITGO heuristic applied to engineering optimization. Expert Syst. Appl. 110, 106–124 (2018)

    Google Scholar 

  34. Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 23(4), 1001–1014 (2012)

    Google Scholar 

  35. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, Hoboken (2010)

    Google Scholar 

  36. Guedria, N.B.: Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 40, 455–467 (2016)

    Google Scholar 

  37. Arora, J.S.: Introduction to Optimum Design. McGraw-Hill Book Company, New York (1989)

    Google Scholar 

  38. Wu, L., Liu, Q., Tian, X., Zhang, J., Xiao, W.: A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems. Knowl.-Based Syst. 144, 153–173 (2018)

    Google Scholar 

  39. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Wei-Shang, G.A.O., Cheng, S.H.A.O.: Iterative dynamic diversity evolutionary algorithm for constrained optimization. Acta Automatica Sin. 40(11), 2469–2479 (2014)

    Google Scholar 

  41. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Google Scholar 

  42. Huang, F.Z., Wang, L., He, Q.: An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 186(1), 340–356 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Wang, Y., Cai, Z., Zhou, Y.: Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization. Int. J. Numer. Meth. Eng. 77(11), 1501–1534 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Long, W., Jiao, J., Liang, X., Tang, M.: Inspired grey wolf optimizer for solving large-scale function optimization problems. Appl. Math. Model. 60, 112–126 (2018)

    MathSciNet  Google Scholar 

  45. Wang, L., Li, L.P.: An effective differential evolution with level comparison for constrained engineering design. Struct. Multidiscip. Optim. 41(6), 947–963 (2010)

    Google Scholar 

  46. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)

    Google Scholar 

  47. Mezura-Montes, E., Coello, C.A.C.: Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican International Conference on Artificial Intelligence, pp. 652–662. Springer, Berlin, Heidelberg, November 2005

    Google Scholar 

  48. Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Google Scholar 

  49. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  50. El Aziz, M.A., Ewees, A.A., Hassanien, A.E.: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 83, 242–256 (2017)

    Google Scholar 

  51. Tharwat, A., Hassanien, A.E., Elnaghi, B.E.: A ba-based algorithm for parameter optimization of support vector machine. Pattern Recogn. Lett. 93, 13–22 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Farag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Shorbagy, M.A., Farag, M.A., Mousa, A.A., El-Desoky, I.M. (2020). A Hybridization of Sine Cosine Algorithm with Steady State Genetic Algorithm for Engineering Design Problems. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019. Advances in Intelligent Systems and Computing, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_15

Download citation

Publish with us

Policies and ethics