Skip to main content

Chemical Exchanges and Actuation in Liposome-Based Synthetic Cells: Interaction with Biological Cells

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10834))

Abstract

The development of new synthetic biology frontiers has led to scenarios where the embodied information-processing capability of biological organisms are implanted, in minimalistic version, in liposome-based synthetic cells. These are cell-like systems of minimal complexity resembling biological cells. Although not yet alive, synthetic cells are useful for generating basic biological understanding, and can become interesting biotechnological tools. In 2012 we devised a research program aimed at the design and construction of synthetic cells capable of exchanging chemical signals with biological micro-organisms (in particular bacteria). Here we review the fundamental steps leading to this innovative research field and comment on the most relevant experimental results obtained by us and others.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamala, K.P., Martin-Alarcon, D.A., Guthrie-Honea, K.R., Boyden, E.S.: Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9(5), 431–439 (2017). https://doi.org/10.1038/nchem.2644

    Article  Google Scholar 

  2. Altamura, E., Carrara, P., D’Angelo, F., Mavelli, F., Stano, P.: Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets. Synth. Biol. (OUP) 3, ysy011 (2018)

    Google Scholar 

  3. Amos, M., Dittrich, P., McCaskill, J., Rasmussen, S.: Biological and chemical information technologies. Procedia Comput. Sci. 7, 56–60 (2011). https://doi.org/10.1016/j.procs.2011.12.019

    Article  Google Scholar 

  4. Bitbol, M., Luisi, P.L.: Autopoiesis with or without cognition: defining life at its edge. J. R. Soc. Interface 1(1), 99–107 (2004). https://doi.org/10.1098/rsif.2004.0012

    Article  Google Scholar 

  5. Breslow, R.: Mechanism of the formose reaction. Tetrahedron Lett. 1, 22–26 (1959)

    Article  Google Scholar 

  6. Butlerow, A.: Bildung einer zuckerartigen Substanz durch Synthese. Annalen 120, 295–298 (1861)

    Article  Google Scholar 

  7. Cronin, L., et al.: The imitation game—a computational chemical approach to recognizing life. Nat. Biotechnol. 24(10), 1203–1206 (2006). https://doi.org/10.1038/nbt1006-1203

    Article  Google Scholar 

  8. Damiano, L., Stano, P.: Synthetic Biology and Artificial Intelligence. Grounding a cross-disciplinary approach to the synthetic exploration of (embodied) cognition. Complex Syst. 27, 199–228 (2018). https://doi.org/10.25088/ComplexSystems.27.3.199

    Article  Google Scholar 

  9. Damiano, L., Kuruma, Y., Stano, P.: What can synthetic biology offer to artificial intelligence (and vice versa)? Biosystems 148, 1–3 (2016). https://doi.org/10.1016/j.biosystems.2016.09.005

    Article  Google Scholar 

  10. Damiano, L., Stano, P.: Understanding embodied cognition by building models of minimal life. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.) WIVACE 2017. CCIS, vol. 830, pp. 73–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78658-2_6

    Chapter  Google Scholar 

  11. Elani, Y.: Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology. Biochem. Soc. Trans. 44(3), 723–730 (2016). https://doi.org/10.1042/BST20160052

    Article  Google Scholar 

  12. Filisetti, A., et al.: A stochastic model of autocatalytic reaction networks. Theory Biosci. 131(2), 85–93 (2012). https://doi.org/10.1007/s12064-011-0136-x

    Article  Google Scholar 

  13. Fujiwara, K., Adachi, T., Doi, N.: Artificial cell fermentation as a platform for highly efficient cascade conversion. ACS Synth. Biol. 7(2), 363–370 (2018). https://doi.org/10.1021/acssynbio.7b00365

    Article  Google Scholar 

  14. Furusato, T., Horie, F., Matsubayashi, H.T., Amikura, K., Kuruma, Y., Ueda, T.: De Novo synthesis of basal bacterial cell division proteins FtsZ, FtsA, and ZipA inside giant vesicles. ACS Synth. Biol. 7(4), 953–961 (2018). https://doi.org/10.1021/acssynbio.7b00350

    Article  Google Scholar 

  15. Gardner, P.M., Winzer, K., Davis, B.G.: Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1(5), 377–383 (2009). https://doi.org/10.1038/nchem.296

    Article  Google Scholar 

  16. Hanczyc, M.M., Ikegami, T.: Chemical basis for minimal cognition. Artif. Life 16(3), 233–243 (2010)

    Article  Google Scholar 

  17. Karzbrun, E., Tayar, A.M., Noireaux, V., Bar-Ziv, R.H.: Synthetic biology. Programmable on-chip DNA compartments as artificial cells. Science 345(6198), 829–832 (2014). https://doi.org/10.1126/science.1255550

    Article  Google Scholar 

  18. Kita, H., et al.: Replication of genetic information with self-encoded replicase in liposomes. ChemBioChem 9(15), 2403–2410 (2008). https://doi.org/10.1002/cbic.200800360

    Article  Google Scholar 

  19. Krinsky, N., et al.: Synthetic cells synthesize therapeutic proteins inside tumors. Adv. Healthc. Mater. 7(9), e1701163 (2018). https://doi.org/10.1002/adhm.201701163

    Article  Google Scholar 

  20. LeDuc, P.R., et al.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2(1), 3–7 (2007). https://doi.org/10.1038/nnano.2006.180

    Article  Google Scholar 

  21. Lentini, R., et al.: Two-way chemical communication between artificial and natural cells. ACS Central Sci. 3(2), 117–123 (2017). https://doi.org/10.1021/acscentsci.6b00330

    Article  Google Scholar 

  22. Lentini, R., et al.: Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat. Commun. 5, 4012 (2014). https://doi.org/10.1038/ncomms5012

    Article  Google Scholar 

  23. Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93(1), 1–13 (2006). https://doi.org/10.1007/s00114-005-0056-z

    Article  Google Scholar 

  24. Luisi, P.L., Allegretti, M., de Souza, T.P., Steiniger, F., Fahr, A., Stano, P.: Spontaneous protein crowding in liposomes: a new vista for the origin of cellular metabolism. ChemBioChem 11(14), 1989–1992 (2010). https://doi.org/10.1002/cbic.201000381

    Article  Google Scholar 

  25. Majumder, S., Liu, A.P.: Bottom-up synthetic biology: modular design for making artificial platelets. Phys. Biol. 15(1), 013001 (2017). https://doi.org/10.1088/1478-3975/aa9768

    Article  Google Scholar 

  26. Martino, C., et al.: Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angew. Chem. Int. Ed. 51(26), 6416–6420 (2012). https://doi.org/10.1002/anie.201201443

    Article  Google Scholar 

  27. Matosevic, S., Paegel, B.M.: Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line. J. Am. Chem. Soc. 133(9), 2798–2800 (2011). https://doi.org/10.1021/ja109137s

    Article  Google Scholar 

  28. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living, 1st edn. D. Reidel Publishing Company, Dordrecht (1980)

    Book  Google Scholar 

  29. Mavelli, F., Rampioni, G., Damiano, L., Messina, M., Leoni, L., Stano, P.: Molecular communication technology: general considerations on the use of synthetic cells and some hints from in silico modelling. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 169–189. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12745-3_14

    Chapter  Google Scholar 

  30. Nakano, T.: Molecular communication: a 10 year retrospective. IEEE Trans. Mol. Biol. Multi-Scale Commun. 3(2), 71–78 (2017). https://doi.org/10.1109/TMBMC.2017.2750148

    Article  Google Scholar 

  31. Nakano, T., Eckford, A.W., Haraguchi, T.: Molecular Communications. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  32. Nakano, T., Moore, M., Enomoto, A., Suda, T.: Molecular communication technology as a biological ICT. In: Sawai, H. (ed.) Biological Functions for Information and Communication Technologies. SCI, vol. 320, pp. 49–86. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15102-6_2

    Chapter  Google Scholar 

  33. Nanonetworking. http://area51.stackexchange.com/proposals/117498

  34. van Nies, P., Westerlaken, I., Blanken, D., Salas, M., Mencía, M., Danelon, C.: Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9(1), 1583 (2018). https://doi.org/10.1038/s41467-018-03926-1

    Article  Google Scholar 

  35. Oparin, A.I.: The Origin of Life. Traslated by S. Morgulis, 2nd edn. Dover Publications, New York (1953)

    Google Scholar 

  36. Ota, S., Yoshizawa, S., Takeuchi, S.: Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew. Chem. Int. Ed. 48(35), 6533–6537 (2009). https://doi.org/10.1002/anie.200902182

    Article  Google Scholar 

  37. Pautot, S., Frisken, B.J., Weitz, D.A.: Production of unilamellar vesicles using an inverted emulsion. Langmuir 19(7), 2870–2879 (2003). https://doi.org/10.1021/la026100v

    Article  Google Scholar 

  38. Rampioni, G., Damiano, L., Messina, M., D’Angelo, F., Leoni, L., Stano, P.: Chemical communication between synthetic and natural cells: a possible experimental design. Electron. Proc. Theor. Comput. Sci. 130, 14–26 (2013). https://doi.org/10.4204/EPTCS.130.4

    Article  Google Scholar 

  39. Rampioni, G., et al.: Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa. Chem. Commun. 54, 2090–2093 (2018). https://doi.org/10.1039/C7CC09678J

    Article  Google Scholar 

  40. Rampioni, G., et al.: A synthetic biology approach to bio-chem-ICT: first moves towards chemical communication between synthetic and natural cells. Nat. Comput. 1–17 (2014). https://doi.org/10.1007/s11047-014-9425-x

    Article  MathSciNet  Google Scholar 

  41. Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philos. Sci. 10, 18–24 (1943)

    Article  Google Scholar 

  42. Sakakura, T., Nishimura, K., Suzuki, H., Yomo, T.: Statistical analysis of discrete encapsulation of nanomaterials in colloidal capsules. Anal. Methods 4(6), 1648–1655 (2012). https://doi.org/10.1039/c2ay25105a

    Article  Google Scholar 

  43. Sawai, H. (ed.): Biological Functions for Information and Communication Technologies: Theory and Inspiration. SCI. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15102-6

    Book  Google Scholar 

  44. Shimizu, Y., et al.: Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19(8), 751–755 (2001). https://doi.org/10.1038/90802

    Article  Google Scholar 

  45. Stano, P., Carrara, P., Kuruma, Y., de Souza, T.P., Luisi, P.L.: Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem. 21(47), 18887–18902 (2011). https://doi.org/10.1039/C1JM12298C

    Article  Google Scholar 

  46. Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., Luisi, P.L.: Semi-synthetic minimal cells as a tool for biochemical ICT. Biosystems 109(1), 24–34 (2012). https://doi.org/10.1016/j.biosystems.2012.01.002

    Article  Google Scholar 

  47. Tang, T.Y.D., et al.: Gene-mediated chemical communication in synthetic protocell communities. ACS Synth. Biol. 7, 339–346 (2018). https://doi.org/10.1021/acssynbio.7b00306

    Article  Google Scholar 

  48. Varela, F.J.: Principles of Biological Autonomy. The North-Holland Series in General Systems Research. Elsevier North-Holland, Inc., New York (1979)

    Google Scholar 

  49. Walde, P., Cosentino, K., Engel, H., Stano, P.: Giant vesicles: preparations and applications. ChemBioChem 11(7), 848–865 (2010). https://doi.org/10.1002/cbic.201000010

    Article  Google Scholar 

  50. Weiss, M., et al.: Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17(1), 89–96 (2018). https://doi.org/10.1038/nmat5005

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

P.S. is grateful to Luisa Damiano (University of Messina, Italy) for inspiring discussions on autonomy, autopoiesis, embodied cognition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Stano .

Editor information

Editors and Affiliations

Appendices

List of Abbreviations

\(\alpha \)-HL:

\(\alpha \)-haemolysin

AI-2:

autoinducer-2

AHL:

N-acyl homoserine lactone

AI:

artificial intelligence

C4-CoA:

butyryl coenzyme A

C4-HSL:

N-butyryl homoserine lactone

C.V.:

coefficient of variation (standard deviation/mean)

HSL:

homoserine lactone

ICTs:

information and communication technologies

IPTG:

isopropyl \(\beta \)-d-1-thiogalactopyranoside

SAM:

S-adenosylmethionine

SB:

synthetic biology

SC:

synthetic cell

TL:

translation (from RNA to protein)

TX:

transcription (from DNA to RNA)

TX-TL:

coupled transcription-translation reactions

 

Appendix A

With reference to Fig. 1, here we give explanatory comments on the role and relevance of three technologies and on their intersections.

1: Cell-free systems have been traditionally used in biochemical and molecular biology to study biological processes outside the cell. Known since decades, the TX-TL systems have been recently re-discovered, also thanks to the introduction of a purified kit whose composition is minimal and perfectly known, the so-called PURE system [44].

2: Liposome technology has been developed mainly for producing liposomes for drug-delivery applications and for biophysical studies. Several methods are available to prepare empty and solute-filled liposomes, depending on the lipid type and vesicle size and morphology. Of particular interest are the so-called ‘giant’ vesicles (GVs) because they mimic biological cells and can be directly visualized by optical microscopy, for a review on GVs, see [49].

3: Microfluidic devices have been recently introduced in order to manipulate solutions at the micrometer scale. The use of microfluidics for producing water-in-oil droplets is one of the most important application of this technique, but the relevant goal is the production of giant vesicles directly in the microfluidic apparatus (for a review, see [11]). Currently the strategy is based on the formation of water-in-oil-in-water double emulsion droplet, followed by solvent removal.

1–2: These systems are the most used (to date), and consist of liposomes formed by non-microfluidic methods with TX-TL systems (or other biochemical machineries) encapsulated in their aqueous lumen or embedded in their membrane. For a review, see [45]. Note that the populations of spontaneously formed liposomes are generally quite heterogeneous with respect to several parameters (C.V. often >50%).

1–3: Cell-free systems included in microfluidic devices are also a possible combination useful for synthetic biology. For example, work has been carried out to study the dynamics of transcription-translation processes [17].

2–3: To this section belong all work aiming at constructing vesicles, and in particular GVs, by microfluidic devices. It is important to remark that the formation of vesicles in microfluidic devices occurs by repetitive reconstitution of microscopic conditions, and thus all vesicles have very similar structure and a homogeneous population is obtained (C.V. <5–10%). Pioneering work can be found here [27, 36].

1–2–3: This triple overlapping region is probably the ‘Holy Grail’ of bottom-up SB, namely, the construction by microfluidic devices of solute-filled vesicles, so to have a homogeneous population of bioreactors that can be designed and build according to the general requirements of SB, namely modularity, programmability, reproducibility, etc. An example can be found in [26].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rampioni, G., D’Angelo, F., Zennaro, A., Leoni, L., Stano, P. (2019). Chemical Exchanges and Actuation in Liposome-Based Synthetic Cells: Interaction with Biological Cells. In: Bartoletti, M., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2017. Lecture Notes in Computer Science(), vol 10834. Springer, Cham. https://doi.org/10.1007/978-3-030-14160-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14160-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14159-2

  • Online ISBN: 978-3-030-14160-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics