Skip to main content

Hierarchical Block Matrix Approach for Multi-view Clustering

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2017)

Abstract

Scientists are facing two important challenges when investigating life processes. First, biological systems, from gene regulation to physiological mechanisms, are inherently multiscale. Second, complex disease data collection is an expensive process, and yet the analyses are presented in a rather empirical and sometimes simplistic way, completely missing the opportunity of uncovering patterns of predictive relationships and meaningful profiles. In this work, we propose a multi-view clustering methodology that, although quite general, could be used to identify patient subgroups, for different omic information, by studying the hierarchical structures of the patient data in each view and merging their topologies. We first demonstrate the ability of our method to identify hierarchical structures in synthetic data sets and then apply it to real multi-view multi-omic data sets. Our results, although preliminary, suggest that this methodology outperforms single-view clustering approaches and could open several directions for improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    ArticleĀ  Google ScholarĀ 

  2. Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: IJCAI, pp. 2598ā€“2604 (2013)

    Google ScholarĀ 

  3. Carmel, L., Harel, D., Koren, Y.: Drawing directed graphs using one-dimensional optimization. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 193ā€“206. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36151-0_19

    ChapterĀ  MATHĀ  Google ScholarĀ 

  4. Carroll, J.S., et al.: Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38(11), 1289 (2006)

    ArticleĀ  Google ScholarĀ 

  5. Castro, M.A., Wang, X., Fletcher, M.N., Meyer, K.B., Markowetz, F.: Reder: R/bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations. Genome Biol. 13(4), R29 (2012)

    ArticleĀ  Google ScholarĀ 

  6. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 129ā€“136. ACM (2009)

    Google ScholarĀ 

  7. Ciriello, G., Miller, M.L., Aksoy, B.A., Senbabaoglu, Y., Schultz, N., Sander, C.: Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45(10), 1127ā€“1133 (2013)

    ArticleĀ  Google ScholarĀ 

  8. Greene, D., Cunningham, P.: A matrix factorization approach for integrating multiple data views. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5781, pp. 423ā€“438. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04180-8_45

    ChapterĀ  Google ScholarĀ 

  9. Grigorov, M.G.: Global properties of biological networks. Drug Discov. Today 10(5), 365ā€“372 (2005)

    ArticleĀ  Google ScholarĀ 

  10. Herlau, T., MĆørup, M., Schmidt, M.N., Hansen, L.K.: Detecting hierarchical structure in networks. In: 2012 3rd International Workshop on Cognitive Information Processing (CIP), pp. 1ā€“6. IEEE (2012)

    Google ScholarĀ 

  11. Kandoth, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333ā€“339 (2013)

    ArticleĀ  Google ScholarĀ 

  12. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 252ā€“260. SIAM (2013)

    Google ScholarĀ 

  13. Mones, E., Vicsek, L., Vicsek, T.: Hierarchy measure for complex networks. PloS one 7(3), e33799 (2012)

    ArticleĀ  Google ScholarĀ 

  14. Petz, D.: Entropy, von Neumann and the von Neumann entropy. In: RĆ©dei, M., Stƶltzner, M. (eds.) John von Neumann and the Foundations of Quantum Physics. VCIY, vol. 8, pp. 83ā€“96. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-017-2012-0_7

    ChapterĀ  Google ScholarĀ 

  15. Ruan, J., Dean, A.K., Zhang, W.: A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst. Biol. 4(1), 8 (2010)

    ArticleĀ  Google ScholarĀ 

  16. Serra, A., Fratello, M., Fortino, V., Raiconi, G., Tagliaferri, R., Greco, D.: MVDA: a multi-view genomic data integration methodology. BMC Bioinform. 16(1), 1 (2015)

    ArticleĀ  Google ScholarĀ 

  17. Serra, A., Fratello, M., Greco, D., Tagliaferri, R.: Data integration in genomics and systems biology. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1272ā€“1279. IEEE (2016)

    Google ScholarĀ 

  18. Shavit, Y., Walker, B.J., et al.: Hierarchical block matrices as efficient representations of chromosome topologies and their application for 3C data integration. Bioinformatics 32(8), 1121ā€“1129 (2016)

    ArticleĀ  Google ScholarĀ 

  19. Taskesen, E., et al.: Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics. Sci. Rep. 6, 24949 (2016)

    ArticleĀ  Google ScholarĀ 

  20. Trusina, A., Maslov, S., Minnhagen, P., Sneppen, K.: Hierarchy measures in complex networks. Phys. Rev. Lett. 92(17), 178702 (2004)

    ArticleĀ  Google ScholarĀ 

  21. Verhaak, R.G., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98ā€“110 (2010)

    ArticleĀ  Google ScholarĀ 

  22. Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11(3), 333ā€“337 (2014)

    ArticleĀ  Google ScholarĀ 

  23. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236ā€“244 (1963)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. West, M., et al.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. 98(20), 11462ā€“11467 (2001)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serra, A., Guida, M.D., LiĆ³, P., Tagliaferri, R. (2019). Hierarchical Block Matrix Approach for Multi-view Clustering. In: Bartoletti, M., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2017. Lecture Notes in Computer Science(), vol 10834. Springer, Cham. https://doi.org/10.1007/978-3-030-14160-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14160-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14159-2

  • Online ISBN: 978-3-030-14160-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics