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Abstract. Immunoglobulin (IG) clonotype identification is a fundamen-
tal open question in modern immunology. An accurate description of the
IG repertoire is crucial to understand the variety within the immune sys-
tem of an individual, potentially shedding light on the pathogenetic pro-
cess. Intrinsic IG heterogeneity makes clonotype inference an extremely
challenging task, both from a computational and a biological point of
view. Here we present ICING, a framework that allows to reconstruct
clonal families also in case of highly mutated sequences. ICING has a
modular structure, and it is designed to be used with large next gener-
ation sequencing (NGS) datasets, a technology which allows the char-
acterisation of large-scale IG repertoires. We extensively validated the
framework with clustering performance metrics on the results in a simu-
lated case. ICING is implemented in Python, and it is publicly available
under FreeBSD licence at https://github.com/slipguru/icing.
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1 Scientific Background

The identification of immunoglobulin (IG) clonotypes is a key question in modern
immunology. A clonotype is a particular combination of IGs generated by a
single plasma cell clone, which is a population of cells all derived from a single
progenitor cell (germline). The ability to infer clonotypes is crucial as it allows to
understand how much diversity an individual has in its immune repertoire and to
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Fig. 1. IG recombination. Starting from V(D)J gene segments, one of each type is
selected to produce the IG sequence. When joining two segments, some insertions and
deletions (indels) may occur. A constant region is appended to the IG sequence after
the recombination.

study immune response through B-cell clonal amplification and diversification.
Indeed, understanding the variety within the immune system of an individual
may potentially shed light on pathogenetic processes. In healthy individuals the
repertoire is expected to be extremely diverse, to guarantee the ability to respond
to a wide range of antigens (e.g. bacteria, viruses). The diversity of the B-cell
repertoire is due to the gene recombination process, where, by random selection,
one for each V, D and J genes are joined together, with a simultaneous trimming
and addition of random nucleotides (Figure 1). The resulting bridging segment
between V and J genes, called complementarity determining region 3 (CDR3),
is the most variable and therefore important for the antigen binding [11]. Before
encountering an antigen, B-cells have zero (or few) somatic mutations. Without
considering mutations, the overall repertoire diversity usually comprises 107 to
108 clonotypes, with lower bounds of diversity of 10° and potentially as high as
10! unique molecules in a single individual [4]. After the immune response, they
undergo clonal amplification and somatic hypermutation, to increase the binding
affinity to the antigen [8]. The potential frequency of somatic hypermutation,
which can be at least 10°-10° fold greater than the normal rate of mutation across
the genome [9], may generate many orders of magnitude more diversity in the B-
cell receptor repertoire than the 10'* unique molecules per individual. Therefore,
intrinsic data heterogeneity makes IG clonotyping an extremely difficult task.

2 IcCING

To tackle the problem of IG clonotyping inference, we developed 1CING

(Inferring Clonotypes of ImmuNoGlobulins), a Python library publicly available
at https://github.com/slipguru/icing. The method aims at grouping IGs
into clonal families, whose members derive from the same germline ancestor.
Input and output data have the same format used by the Change-O suite, hence
ICING is easily integrable in the usual pRESTO/Change-O pipeline [14,5]. In
particular, data should be in the format produced by Change-O, that is, IGs
should be represented via their V gene calls and CDR3 amminoacidic (or nu-
cleotidic) sequence. Also, an indication of the mutation level of the sequence
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CSV or TAB-delimited file (1) Data shrinking (2) High-level clustering (3) Clonotype identification

Fig. 2. ICING pipeline. Starting from a CSV or TAB-delimited file, the first step con-
sists in grouping together sequences based on their V gene calls and CDR3 identity
(data shrinking step). An high-level clustering is done on CDR3 lengths to reduce the
computational workload of the third and final phase, which involves a clustering step
on each of the previously found groups to obtain fine-grained IG clonotypes.

with respect to reference should be present, to allow for the final steps of the
pipeline (Section 3.3).

ICING is designed to be used with a large number of data, for example
coming from NGS technologies, composed of more than 10° sequences. The
method is implemented in Python, exploiting separate processes on multi-core
machines for almost each step of three sequential phases: (i) data shrinking,
(i) high-level grouping and (i) fine-grained clonotype identification (Figure 2).

3 Materials and Methods

3.1 Synthetic Data Generation

We used partis [10] to generate synthetic datasets, which are characterised by an
increasing number of IGs and clones, 0.05 frequency of insertions and deletions
(indels) of maximum length of 6 nucleotides on the CDR3 sequence, and different
degrees of V gene sequence mutation level. Table 1 presents an overview of the
datasets.

3.2 Preprocessing

The datasets were submitted to IMGT/HighV-QUEST [1] for V(D)J genes in-
ference, then preprocessed by a Change-O feature [5]. The outcome is a single
TAB-delimited file containing the information about IGs and their metadata,
such as the identification of V(D)J sequences (i.e., V(D)J gene calls), V gene se-
quence mutation level and identification of CDR3 sequence, to be used as input
to the pipeline.

3.3 Clonotype Identification

The clonotype identification step is divided into three parts.
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Table 1. Datasets overview. For reference, the total number of functional gene seg-
ments for the V/D/J regions of heavy chains in the human genome are 65/27/6 [7].

dataset sequences clonotypes avg unique unique unique mean (std)
seqs/clone  V genes D genes J genes of V gene mutation
D1 9233 e 92.35 35 24 6 9.59 (4.64)
D2 17825 74 185.09 38 24 6 8.64 (4.46)
D3 37897 7 396.43 34 25 6 9.04 (4.51)
D4 47764 389 99.08 56 25 6 8.63 (4.30)
D5 102336 388 209.44 58 25 6 8.41 (4.70)
D6 205986 379 428.44 56 25 6 9.56 (4.46)
D7 162713 1168 109.66 58 25 6 8.72 (4.67)
D8 301978 1180 206.22 58 25 6 9.15 (4.73)
D9 589680 1185 400.26 58 25 6 8.94 (4.65)
D10 291076 2282 96.29 58 25 6 8.84 (4.46)
D11 568799 2317 187.76 58 25 6 9.12 (4.76)
D12 1208110 2358 404.30 58 25 6 9.11 (4.77)

Data Shrinking. Input data are grouped based on V gene calls (exact corre-
spondence) and CDR3 identity (completely overlapping sequence). This allows
to reduce the computational workload of next clustering steps. To each group is
assigned a weight, equal to the cardinality of the group.

High-level Group Inference. This phase involves a clustering step on CDR3
lengths of previously identified groups. The outcome, which consists of high-level
groups of IGs to be refined afterwards, contains IG sequences having comparable
CDRS3 lengths. This is done using MiniBatchKMeans clustering algorithm [12],
which is computationally efficient and, more importantly, may group together
very similar clusters.

Fine-grained Group Inference. Each high-level group extracted before is then
subdivided based on the actual IG distance. The distance between IGs is com-
puted taking into account V gene calls and CDR3 sequences. In particular, the
distance between two IGs is lower than infinity if and only if they have at least
one V gene call in common. In such case, their actual distance is computed using
a sequence distance method on their CDR3 sequences. In particular, the method
implements a generic normalised distance measure based on a particular model
matrix M. Let |M|max = max; ; |M,;|. For two sequences s and t of equal
length £, we defined their distance D(s,t) as follows:

1 L

l- HM”max Z

=1

D(s,t) = M(s',tY). (1)

The choice of a specific model depends on the type of data under analysis. When
M = H, where H(z,y) = 0 if z = y and 1 otherwise, the model assumes the
form of a normalised Hamming distance [6].

Such distance measure allows seamless integration of different nucleotidic
and amminoacidic models. ICING includes Hamming and its weighted variants,
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such as HS1F [16]. The models are defined between sequences of equal length.
The method allows also the comparison of sequences with different lengths, by
tuning a tolerance parameter. In such case, a standard alignment step between
two sequences of different lengths may be performed before the computation of
their distance, using the Smith-Waterman algorithm for sequence alignment [13].

IG sequences are characterised by an high level of mutation. Therefore, a cor-
rection function based on V gene sequence mutation level may be used to reduce
distances between two IGs if mutated. This procedure encodes the uncertainty
of the distance measure when dealing with highly mutated data, allowing for a
more robust measure. We note that this is a step which is strongly depends on
the data at hand. In our experiments, we corrected the distances between two
IGs by multiplying D(s,t) with vy, where vy = 1 — 2™t with mg and my
are the mutation levels of the sequences s and t, respectively.

After the design of such distance metric, fine-grained groups (i.e., final clono-
types) are extracted using the DBSCAN clustering algorithm [2], which only
require the parameter € for the neighbourhood search of spatial distances. On
top of an appropriate index structure, the algorithm can run in O(nlogn) and
it only needs linear memory, allowing the analysis of large-scale data.

3.4 Performance Assessment

For synthetic datasets the information about IG clonotypes is known, and it is
used as ground truth. In order to evaluate clustering performance of the method,
we used standard metrics such as homogeneity (HOM), completeness (COM)
and V-measure (VSC), mutual information based scores, namely Adjusted Mu-
tual Information (AMI) and Normalized Mutual Information (NMI), Adjusted
Rand Index (ARI), and Fowlkes-Mallows score (FMI) [3, 15]. Such measures are
bound by [0, 1], and no assumption is made on the cluster structure. Moreover,
AMI, ARI and FMI are adjusted against chance, which is an important feature
when evaluating a clustering performance in presence of a large number of clus-
ters. Therefore, random (uniform) label assignments have scores close to 0 for
measures normalised against chance.

3.5 Computing Architecture

Experiments were performed using a computing machine equipped with two
Intel® Xeon® CPUs E5-2630 v3 (2.4 GHz, 8 cores each) and 128 GB of RAM*.

4 Results

4.1 Performance Evaluation

We evaluated the method performance on the datasets shown in Table 1. In
particular, Table 2 shows the clustering scores (Section 3.4) for datasets D1-3,

4 This is not representative of the amount of computational resources required by the
method.
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Table 2. Comparison of performance metrics between various ICING configuration on
synthetic datasets. Columns are: € (the DBSCAN parameter for neighbourhood selec-
tion), tolerance (tolerance parameter on CDR3 length), correction (Y for a correction
based on the mutation level of V gene segments, N for no correction), followed by the
clustering measures as described in Section 3.4. For each dataset, results are ordered
by a decreasing FMI, which is the most strict of the measures for its properties.

no chance normalisation chance normalisation
dataset € tolerance correction HOM COM VSC NMI AMI ARI FMI

0.2 0 Y 0.91 094 0.92 092 0.90 0.86 0.87
0.2 6 Y 0.90 094 0.92 092 0.89 0.86 0.86
D1 0.2 3 Y 0.87 0.94 0.90 0.90 0.86 0.76 0.78
0.2 6 N 0.87 0.94 0.90 0.90 0.86 0.75 0.77
0.2 0 N 0.86 0.94 0.90 0.90 0.85 0.75 0.77
0.2 0 Y 0.93 093 0.93 093 0.93 0.90 0.91
0.2 6 Y 0.93 0.93 0.93 093 0.93 0.90 0.91
D2 0.2 3 Y 0.93 0.93 0.93 093 0.93 0.90 0.90
0.2 3 N 0.92 093 092 092 0.91 0.88 0.88
0.2 0 N 0.91 093 0.92 092 0.91 0.87 0.88
0.2 0 Y 0.94 093 0.93 093 0.92 0.92 0.92
0.2 3 Y 0.94 092 093 093 0.92 0.92 0.92
D3 0.2 0 N 0.92 093 092 092 0.91 0.89 0.89
0.2 6 Y 0.92 0.93 093 093 0.92 0.88 0.88
0.2 6 N 0.92 093 092 092 0.91 0.87 0.87

obtained using different ICING configurations. The metric used for CDR3 se-
quence distance computation is the Hamming metric. The other parameters we
investigated involve the neighbourhood selection radius of the DBSCAN clus-
tering algorithm (restricted to 0.2 or 0.6), the tolerance of the difference in
CDRS3 sequence lengths (0, 3 or up to 6 allowed insertions or deletions), and
the optional distance correction based on the V gene segment mutation level.

Table 2 is ordered based on a decreasing FMI score, which, for its properties, it
is the most strict of the clustering measures described in Section 3.4. The highest
scores (close to 1) for each of the three datasets are associated to similar ICING
configurations, in which the neighbourhood selection of the DBSCAN clustering
algorithm is restricted to 0.2, the tolerance of the difference in sequence lengths
is 0 (i.e., no alignment between CDR3s needed to be done), and sequence dis-
tances are corrected based on the V gene segment mutation level. Particularly
for dataset D1, the distance correction is shown to be a critical step to reli-
ably identify IG clonotypes, as confirmed by high ARI, AMI and FMI scores
(chance-corrected clustering measures). Notably, for D2 and D3 datasets, the
correction gives better results when associated to a tolerance parameter of 0 or
6 nucleotides for CDR3 sequences.
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Table 3. ICING results on synthetic datasets, using the best parameters as selected in
Table 2 (e: 0.2, tolerance: 0, correction: Y). For each datasets, clustering measures are
reported as described in Section 3.4.

no chance normalisation chance normalisation

dataset sequences HOM COM VSC NMI  AMI ARI FMI

D4 47764 0.90 0.95 0.93 0.93 0.88 0.79 0.80
D5 102336 0.94 0.95 0.94 0.94 0.93 0.89 0.89
D6 205986 0.94 0.95 0.94 0.94 0.94 0.89 0.89
D7 162713 0.93 0.96 0.94 0.94 0.91 0.84 0.84
D8 301978 0.93 0.95 0.94 0.94 0.92 0.86 0.86
D9 589680 0.93 0.96 0.95 0.95 0.92 0.88 0.87
D10 291076 0.94 0.95 0.95 0.96 0.92 0.87 0.86
D11 568799 0.93 0.95 0.94 0.96 0.91 0.89 0.88
D12 1208110 0.95 0.94 0.95 0.95 0.90 0.88 0.90

The best parameters selected on datasets D1-3 were used to evaluate the
results on the remaining datasets of Table 1. The results presented in Table 3
show that ICING is capable to achieve high performance, which means a reliable
IG sequence clonotyping, even with an increasing number of sequences. Also, the
method is stable across datasets with different sizes.

4.2 Expected Clonotypes

Figure 3 shows the number of clonotypes found by ICING compared to the
expected clonotypes (ground truth). Inferred clonotypes are very close to the
ground truth disregarding the size of the datasets. This result, together with
the high clustering performance achieved by our method (Table 2 and Table 3),
makes ICING a reliable framework for IG clonotype identification in real contexts,
where real clonotypes are not known.

5 Conclusion

Our results show ICING to be capable of successfully identifying IG clonotypes,
using synthetic data comprising highly mutated sequences, different V(D)J re-
combination events and indels on CDR3 sequences. Due to the intrinsic difficulty
of validating the method on real data (where the ground truth is not known), we
chose to include only the results obtained on synthetic data, where the method
can be validated in relation to the ground truth.

ICING has a modular structure which allows to combine different features. In
particular, the clonotype identification step has the potential to include Ham-
ming or other arbitrary nucleotidic or amminoacidic models to compute sequence
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Fig. 3. Comparison between ICING clusters and expected clonotypes on synthetic
datasets. For each dataset (x-axis), the number of clonotypes found by ICING is com-
pared with the expected clonotypes (y-axis), i.e., the ground truth. For datasets D1-3,
only the best results based on FMI score (Table 2) are included.

distances, arbitrary CDR3 length tolerance or V gene sequence mutation-based
correction, which is an original contribution of this framework. ICING is scal-
able with the number of input sequences, allowing for the analysis of large-scale
datasets composed of more than 10 sequences, which is a typical use-case when
dealing with NGS data. To achieve scalability, ICING is based on a novel method-
ology which exploits the DBSCAN clustering algorithm, on top of an appropriate
index structure. In particular, we were not able to compare our pipeline with
plain Change-O which, since it is based on hierarchical clustering, has mem-
ory complexity of O(n?), thus infeasible for large datasets. However, we were
able to analyse arbitrarily large datasets by exploiting all of the steps shown in
Section 3.3, which turned out to be fundamental in our analysis.

ICING is easily integrable in the usual pRESTO/Change-O pipeline for IG
analysis and it is ready to be used in real scenarios. In presence of sequences
with low rate of recombination and mutation (i.e., as in the case of non-healthy
patients), we expect the data shrinking step (Section 3.3) to be highly beneficial
for reducing the complexity of the algorithm, which is proportional to the number
of unique CDR3 sequences and V gene calls in the dataset.
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