Skip to main content

DEAME - Differential Expression Analysis Made Easy

  • Conference paper
  • First Online:
Book cover Heterogeneous Data Management, Polystores, and Analytics for Healthcare (DMAH 2018, Poly 2018)

Abstract

Differential gene and protein expression analysis reveals clinically significant insights that are crucial, e.g., for systems medicine approaches. However, processing of data still needs expertise of a computational biologist and existing bioinformatics tools are developed to answer only one research question at a time. As a result, current automated analysis pipelines and software platforms are not fully suited to help research-oriented clinicians answering their hypotheses arising during their clinical routine. Thus, we conducted user interviews in order to identify software requirements and evaluate our research prototype of an application that (i) automates the complete preprocessing of RNA sequencing data in a way that enables rapid hypothesis testing, (ii) can be run by a clinician and (iii) helps interpreting the data. In our contribution, we share details of our preprocessing pipeline, software architecture of our first prototype and the identified functionalities needed for rapid and clinically relevant hypothesis testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clustergrammer’s Documentation. http://clustergrammer.readthedocs.io/index.html

  2. FASTQC Documentation. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc

  3. Afgan, E., et al.: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucl. Acids Res. 44, W537–W544 (2016)

    Article  Google Scholar 

  4. Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). https://doi.org/10.1093/bioinformatics/btu170

    Article  Google Scholar 

  5. Byron, S.A., et al.: Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet. 17, 257 (2016)

    Article  Google Scholar 

  6. Conesa, A., et al.: A survey of best practices for RNA-Seq data analysis. Genome Biol. 17(1), 13 (2016)

    Article  Google Scholar 

  7. D’Antonio, M., et al.: RAP: RNA-Seq analysis pipeline, a new cloud-based NGS web application. BMC Genom. 16(6), S3 (2015)

    Article  Google Scholar 

  8. Dobin, A., et al.: STAR: ultrafast universal RNA-Seq aligner. Bioinformatics 29(1), 15–21 (2013)

    Article  Google Scholar 

  9. Gaur, P., Chaturvedi, A.: A survey of bioinformatics-based tools in RNA-Sequencing (RNA-Seq) data analysis. In: Wei, D.Q., Ma, Y., Cho, W., Xu, Q., Zhou, F. (eds.) Translational Bioinformatics and Its Application, pp. 223–248. Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-024-1045-7_10

    Chapter  Google Scholar 

  10. Gietzelt, M., et al.: The use of tools, modelling methods, data types, and endpoints in systems medicine: a survey on projects of the German e: Med-Programme. Stud. Health Technol. Inform. 228, 670–674 (2016)

    Google Scholar 

  11. Han, H., Jiang, X.: Disease biomarker query from RNA-Seq data. Cancer Inform. 13(Suppl. 1), 81 (2014)

    Google Scholar 

  12. Kraus, M., Schapranow, M.P.: An in-memory database platform for systems medicine. In: Proceedings of the 9th International Conference on Bioinformatics and Computational Biology. ISCA (2017)

    Google Scholar 

  13. Kraus, M., et al.: Olelo: a web application for intuitive exploration of biomedical literature. Nucl. Acids Res. 45(W1), W478–W483 (2017)

    Article  Google Scholar 

  14. Li, J., et al.: From gigabyte to kilobyte: a bioinformatics protocol for mining large RNA-Seq transcriptomics data. PloS ONE 10(4), e0125000 (2015)

    Article  Google Scholar 

  15. Liao, Y., Smyth, G.K., Shi, W.: FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923–930 (2014)

    Article  Google Scholar 

  16. Love, M., Anders, S., Huber, W.: Differential analysis of count data-the DESeq2 package. Genome Biol. 15, 550 (2014)

    Article  Google Scholar 

  17. Love, M.I., Anders, S., Kim, V., Huber, W.: RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Research 4 (2015)

    Article  Google Scholar 

  18. Plattner, H., Schapranow, M.P. (eds.): High-Performance In-Memory Genome Data Analysis: How In-Memory Database Technology Accelerates Personalized Medicine. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03035-7

    Book  Google Scholar 

  19. Queralt-Rosinach, N., Piñero, J., Bravo, A., Sanz, F., Furlong, L.: DisGeNET-RDF: harnessing the innovative power of the semantic web to explore the genetic basis of diseases. Bioinformatics 32(14), 2236–2238 (2016)

    Article  Google Scholar 

  20. Trapnell, C., Pachter, L., Salzberg, S.L.: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9), 1105–1111 (2009)

    Article  Google Scholar 

  21. Wagle, P., Nikolić, M., Frommolt, P.: QuickNGS elevates next-generation sequencing data analysis to a new level of automation. BMC Genom. 16(1), 487 (2015)

    Article  Google Scholar 

  22. Wolfien, M., et al.: TRAPLINE: a standardized and automated pipeline for RNA sequencing data analysis, evaluation and annotation. BMC Bioinform. 17(1), 21 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

Parts of this work were generously supported by a grant of the German Federal Ministry of Education and Research (031A427B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kraus, M. et al. (2019). DEAME - Differential Expression Analysis Made Easy. In: Gadepally, V., Mattson, T., Stonebraker, M., Wang, F., Luo, G., Teodoro, G. (eds) Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH Poly 2018 2018. Lecture Notes in Computer Science(), vol 11470. Springer, Cham. https://doi.org/10.1007/978-3-030-14177-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14177-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14176-9

  • Online ISBN: 978-3-030-14177-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics