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Abstract. With the increasing use of multi-core platforms in safety-
related domains, aircraft system integrators and authorities exhibit a
concern about the impact of concurrent access to shared-resources in the
Worst-Case Execution Time (WCET). This paper highlights the need for
accurate memory-centric scheduling mechanisms for guaranteeing prior-
itized memory accesses to Real-Time safety-related components of the
system. We implemented a software technique called cache coloring that
demonstrates that isolation at timing and spatial level can be achieved
by managing the lines that can be evicted in the cache. In order to show
the effectiveness of this technique, the timing properties of a real appli-
cation are considered as a use case, this application is made of parallel
tasks that show different trade-offs between computation and memory
loads.

Keywords: Real-Time systems · Multi-core · Determinism · Memory
interference.

1 Introduction

The exponential increase in the embedded software’s complexity and the integra-
tion of multiple functionalities in the same computing platform have completely
changed the way in which vendors designed their solutions. Nowadays, many
software manufacturers in the avionic domain are deploying solutions on top of
multi-core processors whose cores are all disabled but one [1]. The main rea-
son behind this decision is the lack of methods for guaranteeing core isolation,
which in turn is mostly due, especially in the latest generation architectures,
to the limited, or absent support of hardware mechanisms for the management
of core-shared resources, e.g. the memory hierarchy or the I/O devices [2]. In
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the most safety-critical systems, isolation is achieved either by integrating soft-
ware components on a dedicated single-core System-on-Chip (SoC) which is used
exclusively for one specific purpose, or by allocating all tasks (i.e. threads or pro-
cesses) on the same core. As a matter of fact, the development of safety-related
software components running on top of a heterogeneous multi-core system is
still difficult, since achieving core-isolation and the consequent predictability is
a challenging problem.

Indeed, on the certification level, the design, validation and integration of
software components with different criticality levels on top of multi-core plat-
forms is still hard. In order to ensure safeness in such process, different tight
domain-specific standards have been proposed to provide a reference guidance
— e.g. ISO-26262 [3] in the automotive domain, and DO-178C [4] in the avionic
one. For the sake of simplicity, but without losing much generality3from now
on we will focus on the considerations and terminology used in MCP CAST-
32 [5] and MCP-CRI (still under development). The purpose of both documents
is: to “identify topics with Multi-Core Processors (MCP) with two active cores
that could impact the safety, performance and integrity of the software for a
single airborne system executing on MCPs”. Both documents also identify in
the temporal and spatial partitioning the key requirement for the deployment
of software components with different Development Assurance Level (DAL) in
the same sub-system. In this way, a software component with a low DAL can
be prevented from propagating it to a higher-DAL component, thus reducing
design and production costs, by simply allocating the two in different partitions.
Similarly, temporal and spatial partitioning mandates that variation in a task’s
computation time and memory usage, respectively, does not interfere with those
another one’s.

At system level, software components can be interfered in different ways. For
example, one application can run for longer a time, thus increasing the execu-
tion time of another application and potentially causing execution starvation.
Also, an application can obtain and not release a shared resource, which may
block another application that needs it, or cause even more severe pathologies
like deadlocks or livelocks. Now, these interferences dramatically affects the es-
timation of the Worst-Case Execution time (WCET). Considering for instance
the pervasiveness of image processing or neural networks components, it is easy
to see that applications are becoming more memory-intensive. This accordingly
shifted the concerns of authorities and industries towards the need of under-
standing and taming the dominating part of WCET estimation — the access to
shared resources, such as the memory subsystems.

Specifically, without applying memory partitioning techniques, multi-core
systems feature DRAM banks and last-level caches that are extremely often ac-
cessed, but shared, hence prone to mutual inter-core contention. Safety-critical
tasks can therefore be interfered both at time and space level. For instance, a
cache line is evicted/replaced, the effective task execution time is impacted by

3 Safety-critical software guidelines in different domains like ISO-26262 or IEC-61508
[6] are quite similar in many technical aspects.
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the need of experiencing a miss event and a data fetch from central memory,
which may even double the memory access latency. This leads to quite pes-
simistic assumptions in the WCET estimation, exacerbating the difference with
respect to the average execution time (ACET) thus causing a reduction of the
total CPU utilization.

At cache level, isolation or partitioning can be provided by using hardware
mechanisms like cache locking, available on the old 7th generation of the ARM
architecture, or cache partitioning, equipping a high-end server segment of In-
tel Xeon x86 architecture. The ARMv8 architecture, which powers most of the
medium-to-high-performance modern system has instead no hardware assisting
technology4. Now, the most prominent software technique that allows to im-
plement cache partitioning is called page coloring [8] and consists in exploiting
the cache mapping function to isolate non-contiguous memory partitions that
injectively maps to cache indices partitions. This technique is founded on virtual
address translation, which allows the striped allocation to be hidden at applica-
tion level. An implementation at OS level would suffer both: great expensiveness,
due to the sparseness in the OS choices by the embedded software companies;
scarce applicability caused by the presence of custom OS. We advocate instead
an easy-to-deploy, legacy-friendly hypervisor solution which additional enable
seamless consolidation of single-core systems — cache coloring is placed below
bare-metal applications and OSs. More precisely, we chose a novel extension [9],
to the Jailhouse hypervisor [10], an open-source, minimal, partitioning hypervi-
sor designed for real-time and/or safety-critical use cases. The solution has been
developed in the context of the EU Horizon 2020 HERCULES research project
[11], whose goal is to develop a system stack for a the next-generation, high-
performance multi-core real-time systems. We consider a representative system
where a real application from military domain runs on top of next-generation
heterogeneous embedded platform, namely a Xilinx Zynq UltraScale+ MPSoC.

The remainder of the paper is organized as follows: Section 2.2 presents an
analysis of interference patterns caused by memory contention. The reference
application is presented in Section 3.1, showing some result of the capabilities
of cache coloring to provide isolation at memory level in Section 3.3, finally a
concluding discussion is presented in Section 4.

2 Platform Memory Profiling

In this section, we present the experiments conducted to determine the impact
on memory latency caused by multiple sources of aggressive memory accesses,
so to characterize the amount of interference.

2.1 Reference architecture

We consider a widely adopted modern heterogeneous multiprocessor system on
chip (MPSoC), the Xilinx Zynq UltraScale+, mounted on the ZCU102 board.

4 The recently announced ARMv8.4-A will include the Memory System Resource
Partitioning and Monitoring system, whose specification have been just released [7].
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This platform is also used in the following to present the cache coloring mecha-
nism. The hardware architecture considered in this work, the Xilinx Ultrascale+,
has a 64-bit quad-core ARM Cortex-A53 CPU coupled with programmable logic
in a single device, cache-coherent interconnect, and a shared memory system,
among other peripheral interfaces. Figure 1 depicts potential contention points

Fig. 1. Xilinx Zynq UltraScale and MPSoC.

that can be found in the platform architecture. As can be observed in Figure
1, the main source of contention between the processors and the programmable
logic is found in the DDR memory controller when the DMA transfer is produced
(1). Other sources of contention are the cache coherent interconnection (2) and
the L2 cache (3).

2.2 Evaluation

Empirical activities have been performed within the HERCULES EU project
[11] and are reported in a dedicated deliverable [12]. Images in this section are
courtesy of respective authors and all rights belong to their respective owners.
Along a first axis, experiments focused on three variants depending on where the
measurement and interference run: CPU-CPU, CPU-FPGA and FPGA-CPU.
On the CPU, it was employed the LMBench synthetic benchmark [13], which
measures the average latency to perform a read memory operation; it was hosted
on one of the CPU cores and configured to test both (i) sequential, and (ii)
random stride reads. On the FPGA, a custom implementation has been realised
and used.
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CPU impact on CPU In this experiment is outlined the interference produced
at intra core level (Figure 2). In the ’x’ axis the Working Set Size (WSS) in
bits is shown, while in the ’y’ axis is displayed the relative execution time in
nanoseconds (ns). As can be observed from the charts, the impact is negligible
whilst the WSS fits in the private L1 cache (32 KiB). The interference starts
when we increase the working set, which increases by at most 2X. The latency
starts to be significant when the WSS reaches the size of the shared L2 cache (1
MiB), in this case, the latency is greatly impacted by the presence of interference,
7X and 16X for sequential and random reads respectively. The latency slowdown
gets serious when the WSS does not fit the L2 cache. In this case, the latency
converges to a delay proportional to the number of interfering cores. The impact
for random interference patterns is less pronounced, however it reaches a 2X and
1.5X for sequential and random reads, respectively.
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Fig. 2. CPU interference CPU.

FPGA impact on CPU In this experiment, authors characterized the inter-
ference experienced by the CPU when there is DMA activity with data required
by the FPGA accelerator. The CPU cores perform sequential (D1) and random
(D2) reads while FPGA accelerator leads to memory accesses with different
bandwidth ratios. Figure 3 shows that, in both cases, memory interference de-
grades CPU performance. The ’X’ axis plots the working set (WSS) in bits, that
is, the amount of data accessed by the benchmark, while the ’Y’ axis shows the
corresponding execution time or latency to perform the operation of the target
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application in nanoseconds (ns). We see that, when the WSS becomes larger
than the L2 cache, it is experienced a heavy performance degradation (almost
3×) if the FPD-DMA module transfers data at maximum bandwidth.
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Fig. 3. FPGA interference to CPU.

CPU impact on FPGA The purpose of this experiment was to find out the
interference caused by the CPU to the FPGA accelerator. The results of this
experiment are presented in the figure 4. In (E1) the FPGA accesses memory
via burst transfers (DMA), while the host cores perform sequential reads. In (E2)
the CPU cores perform random interference. From these results, it is evident that
the performance decreases proportionally to the number of interfering cores, as
in the experiments shown above.

Fig. 4. CPU interference FPGA.

Discussion The experiments presented in this section show that memory-
intensive tasks can significantly influence the others task timing behavior. This
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issue is highly problematic for safety-critical applications and it cannot be miti-
gated in the discussed platform because the Xilinx Ultrascale+ does not present
the capabilities to manage the memory accesses or infer the task priority when
memory access are performed. To solve this problem, we will now briefly intro-
duce an effective approach for resource partitioning, that mitigates this effect
while providing higher bounds of predictability, this software technique is called
cache coloring.

3 Software solution for seamless cache partitioning

Page coloring In order to enforce a deterministic cache hit rate on the most
frequently accessed memory pages we leveraged on a software cache partitioning
technique called cache coloring. By using cache coloring, virtual memory pages
are mapped to contiguous memory sets into the physical cache by “coloring”
the physical pages. By doing so, tasks are allocated a subset of the cache that
cannot be evicted by other concurrent tasks. Page coloring and cache lockdown
[14,15] mechanisms make easier the achievement of the goals established in the
rationale defined in MCP Determinism 8-11 (MCP-CAST 32) that are related to
shared-resources.

Hypervisor solution Jailhouse [10] is an open-source, minimal, partitioning hy-
pervisor designed for real-time and/or safety-critical use cases. It partitions hard-
ware resources (e.g. CPUs, memory regions, PCI devices, interrupts) to cells,
and assigns them to guests OS’s or bare-metal applications called inmates. Jail-
house does not implement any form of resource sharing, scheduling or emulation.
Jailhouse design’s philosophy focuses on simplicity and openness it features a
small code base ranging between 7 and 9.7 KLoC depending on the architecture
(ARMv8 and x86, respectively), implying much lower certification costs. It is
licensed under GPLv2.

Coloring support The software mechanism proposed for the considered problem
was implemented on top of the Jailhouse hypervisor [9] and Xilinx Zynq Ultra-
Scale+. This approach has been successfully evaluated in a demanding real-time
setup [16].

3.1 Use Case Architecture

Application software for military systems exposes high levels of functionality,
integrity and dependability for company missile systems, support facilities and
test applications. This software is typically multi-tasking and it is “hard real-
time”, i.e, the software tasks have to work within specific time constraints, and
any minimal failure results in a complete loss of the missile and an unsuccessful
engagement, hence it is essential that it is designed and verified to very exacting
standards, and it exhibits very high levels of dependability. Dependability is a
term that encompasses the needs associated with software systems that required
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Fig. 5. Techniques to reduce memory interference.

levels of Safety, Security, Reliability, Integrity, Mission Criticality etc. In this
context, most of the products provided by MBDA are mission critical, i.e., a
malfunction could result in the equipment under its control (a missile, radar,
launcher, etc.) failing to operate correctly and thus failing to meet its operational
need. However many of these products now contain features that require the
development to meet the other aspects of Software Dependability. Embedded
systems have very often real-time constraints dealing with predictability and
determinism more than raw speed. Take for example flight software as a tactical
application to support missile engagement mission: it runs guide, navigation and
control algorithms in a real-time environment supported by multitasking O.S. in
order to guarantee timing constraints with the objective to reach acquired target
computing flight asset and adjusting its own route. Sensors management, data
validity and actuators control must be very strictly related to time schedule and
reaction performing the consequent task according to the real environment.

Figure 6 shows the task decomposition of the application that we will con-
sider in this work. The application is composed of different tasks and timers,
the figure highlights the parallel execution of different threads (“Active nodes”)
and the data they exchange (junction nodes). We distinguish between threads
executing algorithms, in circular boxes marked with “Algo”, and the ones per-
forming I/O activities (triangular boxes, marked as “Drivers”) and interacting
with external equipment, which are not shown in the diagram. Dashed lines rep-
resent movements of data, while solid, “stim” lines are events triggering node
execution, that can optionally include also data movement. This application (de-
veloped by MBDA) was designed to execute on a single ARM core of the target
board, clocked at 800MHz, using a memory pool of 500MiB.

3.2 Use Case Application

For the sake of simplicity we will consider only a subset of the taskset presented
in the last section.

Test application The object under test is a single-core bare-metal application
composed by two parts:
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Fig. 6. Target application architecture.

– Test A high-criticality, small-sized (512 B), either instruction- or data-
bound, routine, whose periodic execution (from 200 us to 3 ms) is triggered
through an AXI timer interrupt, in turn raised by the PL.

– Internal interference A lower-criticality, medium-sized (32 KiB) periodic
(500 us) routine, independently executing on the same core as Test.

Observe that Internal interference is able to evict Tests instructions, or data,
from L1 cache, forcing them to be retrieved in L2.

Interference application A quite pessimistic model of memory activity is imple-
mented in External Interference, a second single-core bare-metal application. It
repeatedly and endlessly copies a 2 MiB memory segment into another one of
equal size. To approximate saturation of the system memory bandwidth, and
to maximise L2 cache pollution, we consider two running instances of External
Interference.

Evaluation We measured the execution time of Test under three different setup
configurations:

– Baseline Only the test application is deployed on the original Jailhouse
version 0.8.
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– Contention We just add the interference application to the Baseline config-
uration.

– Contention&coloring We enable the coloring support to the Contention
configuration. In particular, we assign:
• half of the L2 cache to the test application, i.e. 8 colors, or 512 KiB;
• quarter of the L2 cache to each inmate of the interference application,

i.e. 4 colors, or 256 KiB.

In summary, we obtain the 48 configuration combinations that are reported
in Table 1, each of which was run 10 K times. Results are shown in Figure 7.

Test Internal External

Core (id) 3 3 {none, 1-2}
Period (ms) {0.2, 0.4, 0.6, 0.8, 0.5 0

1, 1.5, 2, 3}
Footprint size (B) 512 32 Ki 2 Mi

Footprint kind {instr., data}5 {instr., data}6 data

Table 1. Test configurations summary. 8 and 9 are assumed equal.

3.3 Discussion

We shall first comment on the bare-metal implementation, then compare it first
to the hypervisor-hosted variation without coloring, and lastly discuss the col-
ored version.

Baseline Results for this configuration are plotted in the blue box plots of Figure
7. This results represent our golden standard for attainable performances on
this platform, and we notice it is indeed quite stable. Variations to the execution
period produce effects on the execution time that are negligible both for the data-
bound test, where no significant correlation is observable, and for the instruction-
bound one, where even changes are hard to be measured. Average and maximum
values are respectively around 0.13 and 0.17 µs for the instruction-bound routine,
and around 0.23 and 0.61 µs for the data-bound routine, respectively.

Contention The red box plots in Figure 7 outline the dramatic detriment to
the execution time predictability caused by the introduction of L2 cache stress
activity. Both the average and the worst execution time, for both the instruction-
and the data-bound configuration are now one order of magnitude greater than
the baseline results. In the 2 ms period, instruction-bound case, for instance, we
observe more than a 5.7 factor on the median value, and a 12.3 factor on the
maximum one — 0.75 and 2.1 µs, respectively.
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scales).

Contention with coloring Effects of the activation of the cache coloring config-
uration are visualized in the green box plots of Figure 7. It does not need to
be much commented. The execution time is now only slightly higher than the
baseline — in the worst case, the overhead amounts respectively at 0.11 and 0.22
µs for the instruction- and data-bound routines.

4 Conclusion

Discussion In this paper, we proposed a system partitioning strategy to over-
come timing scalability issues for real-time military application running on het-
erogeneous embedded SoCs based on multi- and many-core. We introduced an
extensive analysis on a realistic application, aimed at pointing out the poten-
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tial performance bottlenecks. Then, we presented our approach to mitigate their
effect on the timing behavior of the application — a partitioning hypervisor en-
hanced with page coloring support, which avoids the problematic contention on
shared caches. The evaluations shows that the solution brings substantial im-
provements for the system predictability, since the jitter of tasks’ execution time
is reduced up to one order of magnitude. We believe that the proposed approach
represents not just a solid framework for both the system development and the
deployment engineering in the real-time military domain, but also a starting
point for the application of memory-aware task co-scheduling policies.

Further works We plan to control the interference caused by conflicting memory
requests from the FPGA by using a memory-arbitration mechanism inspired
by the one proposed by Capodieci et al. in [17]. SiGAMMA is a server-based
mechanism that behaves as a memory arbiter between CPU and GPU, balancing
the penalties of the concurrent memory accesses performed by the GPU engine.
Figure 5 depicts the proposed approach that is based on splitting the system
onto isolated partitions, preventing in this way unwanted interference between
the multiple cores and the FPGA accelerator.
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