Skip to main content

A Data-Driven Approach to Modeling and Solving Academic Teachers’ Competences Configuration Problem

  • Conference paper
  • First Online:
Book cover Intelligent Information and Database Systems (ACIIDS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11431))

Included in the following conference series:

Abstract

Before starting the subsequent academic year, the management staff from each organizational unit (faculty, department, research unit, etc.) must solve the university course timetabling problem (UCTP). UCTP belongs to the class of NP-difficult computational problems, thus its optimal solution becomes a challenge, even for small organizational units. Additionally, the process of searching for solutions is complicated by the need to take account of additional constraints resulting from local conditions, teachers’ and students’ preferences, etc. as well as held limited resources. For the management of a given organizational unit at the university, at the beginning of this process, it is important to find an answer to the question: are we able, given the held resources and existing constraints, to find any UCTP problem solution? Only in the next step we can consider finding an optimum solution according to the selected criterion. It seems that every missing resource can be supplemented (acquired, rented, modified etc.). It is a well-known fact from practice that the greatest problem is related to supplementing the missing competences of academic teachers. You can hire new teachers, already employed teachers can acquire new missing competences or you can manage the available set of competences in a different way. However, the solution to this problem (competences configuration) is key even before solving UCTP.

The article presents the data-driven based approach to modeling and solving the academic teachers’ competences configuration problem for the university’s organizational units of various sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikarek, J.: Lecturers’ competences configuration model for the timetabling problem. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, ACSIS, vol. 15, pp. 441–444 (2018). http://dx.doi.org/10.15439/2018F143

  2. Gotlib, C.C.: The construction of class-teacher timetables. Proc. IFIP Cong. 62, 73–77 (1963)

    Google Scholar 

  3. Babaei, H., Karimpour, J., Hadidi, A.: A survey of approaches for university course timetabling problem. Comput. Ind. Eng. 86, 43–59 (2015)

    Article  Google Scholar 

  4. Redl, T.A.: A study of university timetabling that blends graph coloring with the satisfaction of various essential and preferential conditions. Ph.D. Thesis, Rice University, Houston, Texas (2004)

    Google Scholar 

  5. Asmui, H., Burke, E.K., Garibaldi, J.M.: Fuzzy multiple heuristic ordering for course timetabling. In: The proceedings of the 5th United Kingdom Workshop on Computational Intelligence (UKCI05), London, UK, pp. 302–309 (2005)

    Google Scholar 

  6. Abdullah, S., Burke, E.K., McCollum, B.: Using a randomised iterative improvement algorithm with composite neighbourhood structures for the university course timetabling problem. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics. ORSIS, vol. 39, pp. 153–169. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-71921-4_8

    Chapter  Google Scholar 

  7. Mühlenthaler, M.: Fairness in academic course timetabling. In: Mühlenthaler, M. (ed.) Fairness in academic course timetabling. LNE, vol. 678, pp. 75–105. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12799-6_3

    Chapter  MATH  Google Scholar 

  8. Sitek, P., Wikarek, J.: A hybrid programming framework for modeling and solving constraint satisfaction and optimization problems. Sci. Program. 2016 (2016). Article ID 5102616. https://doi.org/10.1155/2016/5102616

    Article  Google Scholar 

  9. Sitek, P., Wikarek, J.: A multi-level approach to ubiquitous modeling and solving constraints in combinatorial optimization problems in production and distribution. Appl. Intell. 48, 1344–1367 (2018). https://doi.org/10.1007/s10489-017-1107-9

    Article  Google Scholar 

  10. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998). ISBN 0- 471-98232-6

    MATH  Google Scholar 

  11. Home LINDO. www.lindo.com. Accessed 20 Dec 2018

  12. Zwolińska, B., Grzybowska, K.: Shaping production change variability in relation to the utilized technology. In: 24th International Conference on Production Research (ICPR 2017), pp. 51–56 (2017). ISBN 978-1-60595-507-0, ISSN 2475-885X

    Google Scholar 

  13. Nielsen, I., Dang, Q.-V., Nielsen, P., Pawlewski, P.: Scheduling of mobile robots with preemptive tasks. In: Omatu, S., Bersini, H., Corchado, J.M., Rodríguez, S., Pawlewski, P., Bucciarelli, E. (eds.) Distributed Computing and Artificial Intelligence, 11th International Conference. AISC, vol. 290, pp. 19–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07593-8_3

    Chapter  Google Scholar 

  14. Bocewicz, G., Nielsen, I., Banaszak, Z.: Production flows scheduling subject to fuzzy processing time constraints. Int. J. Comput. Integr. Manuf. 29(10), 1105–1127 (2016). https://doi.org/10.1080/0951192X.2016.1145739

    Article  Google Scholar 

  15. Sitek, P., Wikarek, J.: Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD) – model and implementation using hybrid approach. Ann. Oper. Res. 273, 257–277 (2017). https://doi.org/10.1007/s10479-017-2722-x

    Article  MathSciNet  Google Scholar 

  16. Kłosowski, G., Gola, A., Świć, A.: Application of fuzzy logic in assigning workers to production tasks. Distributed Computing and Artificial Intelligence, 13th International Conference. AISC, vol. 474, pp. 505–513. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40162-1_54

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Sitek .

Editor information

Editors and Affiliations

Appendices

Appendix A

$$ {\text{Fc}} = { \hbox{min} }\sum\limits_{{{\text{b}} \in {\text{C}}}} {\sum\limits_{{{\text{a}} \in {\text{T}}}} {{\text{U}}_{\text{b,a}} } } $$
(A1)
$$ {\text{X}}_{\text{b,a}} \le ({\text{Z}}_{\text{b,a}} + {\text{U}}_{\text{b,a}} ) \cdot {\text{ST}}\forall {\text{b}} \in {\text{C}},{\text{a}} \in {\text{T}} $$
(A2)
$$ \sum\limits_{{{\text{b}} \in {\text{C}}}} {{\text{X}}_{\text{b,a}} } = {\text{G}}_{\text{b}} \forall {\text{b}} \in {\text{C}} $$
(A3)
$$ \sum\limits_{{{\text{b}} \in {\text{C}}}} {{\text{H}}_{\text{b}} \cdot {\text{X}}_{\text{b,a}} } \ge {\text{F}}_{\text{a}} \forall {\text{a}} \in {\text{T}} $$
(A4)
$$ \begin{aligned} \sum\limits_{{{\text{b}} \in {\text{C}}}} {{\text{H}}_{\text{b}} \cdot {\text{X}}_{\text{b,a}} } \le {\text{WSP}} \cdot {\text{F}}_{\text{a}} \forall {\text{a}} \in {\text{T}}:{\text{W}}_{\text{a}} = 0 \hfill \\ \sum\limits_{{{\text{b}} \in {\text{C}}}} {{\text{H}}_{\text{b}} \cdot {\text{X}}_{\text{b,a}} } \le {\text{O}} \cdot {\text{F}}_{\text{a}} \forall {\text{a}} \in {\text{T}}:{\text{W}}_{\text{a}} = 1 \hfill \\ \end{aligned} $$
(A5)
$$ \sum\limits_{{{\text{b}} \in {\text{C}}}} {\sum\limits_{{a \in \text{T}}} {{\text{U}}_{\text{b,a}} } } \le {\text{L}} $$
(A6)
$$ {\text{U}}_{\text{b,a}} \le {\text{M}}_{\text{b,a}} \forall {\text{b}} \in {\text{C}},{\text{a}} \in {\text{T}} $$
(A7)
$$ {\text{U}}_{\text{b,a}} = 0\forall {\text{b}} \in {\text{C}},{\text{a}} \in {\text{T}}:{\text{Z}}_{\text{b,a}} = 0 $$
(A8)
$$ {\text{X}}_{\text{b,a}} \in {\text{C}}^{ + } \forall {\text{b}} \in {\text{C}},{\text{a}} \in {\text{T}} $$
(A9)
$$ {\text{U}}_{\text{b,a}} \in \{ 0,1\} \forall {\text{b}} \in {\text{C}},{\text{a}} \in {\text{T}} $$
(A10)

Appendix B Data for Examples P1 and P1a

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wikarek, J., Sitek, P. (2019). A Data-Driven Approach to Modeling and Solving Academic Teachers’ Competences Configuration Problem. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11431. Springer, Cham. https://doi.org/10.1007/978-3-030-14799-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14799-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14798-3

  • Online ISBN: 978-3-030-14799-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics