Skip to main content

Enhancing the Resolution of Satellite Images Using the Best Matching Image Fragment

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2019)

Abstract

Due to very high costs and a long revisit time, it is challenging to obtain good quality satellite images of the area of interest. As a result, super resolution reconstruction (SRR) methods which allow for creating a high-resolution (HR) image based on single or multiple low-resolution (LR) observations are being extensively developed. In this paper, we propose a few improvements to well-known single-image SRR technique based on a dictionary of pairs of matched LR and HR image fragments. The modifications concern both increasing the number of pairs of images fragments and the reconstruction algorithm itself in order to achieve visually pleasing results. This allows us to increase the quality of newly produced HR satellite images what is supported by conducted experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Images taken by Lunar Reconnaissance Orbiter Camera, NASA/GSFC/Arizona State University.

  2. 2.

    B4MultiSR dataset is available at https://research.future-processing.com/sispare/dataset.

References

  1. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, p. I. IEEE (2004)

    Google Scholar 

  2. Chavez-Roman, H., Ponomaryov, V.: Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation. IEEE Geosci. Remote Sens. Lett. 11(10), 1777–1781 (2014)

    Article  Google Scholar 

  3. Demirel, H., Anbarjafari, G.: Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans. Image Process. 20(5), 1458–1460 (2011)

    Article  MathSciNet  Google Scholar 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  5. Fattal, R.: Image upsampling via imposed edge statistics. ACM Trans. Graph. (TOG) 26, 95-1–95-8 (2007). Article No. 95

    Google Scholar 

  6. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  7. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356. IEEE (2009)

    Google Scholar 

  8. He, L., Qi, H., Zaretzki, R.: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 345–352. IEEE (2013)

    Google Scholar 

  9. Heinrich, L., Bogovic, J.A., Saalfeld, S.: Deep learning for isotropic super-resolution from non-isotropic 3D electron microscopy. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 135–143. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_16

    Chapter  Google Scholar 

  10. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  11. Humm, D., et al.: Flight calibration of the LROC narrow angle camera. Space Sci. Rev. 200(1–4), 431–473 (2016)

    Article  Google Scholar 

  12. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  13. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  14. Kostrzewa, D., Skonieczny, Ł., Benecki, P., Kawulok, M.: B4MultiSR: a benchmark for multiple-image super-resolution reconstruction. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2018. CCIS, vol. 928, pp. 361–375. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99987-6_28

    Chapter  Google Scholar 

  15. Li, F., Jia, X., Fraser, D.: Universal HMT based super resolution for remote sensing images. In: 2008 15th IEEE International Conference on Image Processing, ICIP 2008, pp. 333–336. IEEE (2008)

    Google Scholar 

  16. Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S.: Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. Image Process. 25(7), 3194–3207 (2016)

    Article  MathSciNet  Google Scholar 

  17. Nasrollahi, K., Moeslund, T.B.: Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25(6), 1423–1468 (2014)

    Article  Google Scholar 

  18. Robinson, M., et al.: Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci. Rev. 150(1–4), 81–124 (2010)

    Article  Google Scholar 

  19. Shan, Q., Li, Z., Jia, J., Tang, C.K.: Fast image/video upsampling. ACM Trans. Graph. (TOG) 27(5), 153 (2008)

    Article  Google Scholar 

  20. Sheikh, H.R., Bovik, A.C., De Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005)

    Article  Google Scholar 

  21. SpaceX website. http://www.spacex.com. Accessed 30 Dec 2017

  22. Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  23. Tai, Y.W., Liu, S., Brown, M.S., Lin, S.: Super resolution using edge prior and single image detail synthesis. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2400–2407. IEEE (2010)

    Google Scholar 

  24. Wang, L., Huang, Z., Gong, Y., Pan, C.: Ensemble based deep networks for image super-resolution. Pattern Recogn. 68, 191–198 (2017)

    Article  Google Scholar 

  25. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 370–378 (2015)

    Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Sig. Process. 128, 389–408 (2016)

    Article  Google Scholar 

  28. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by research funds of Institute of Informatics, Silesian University of Technology, Gliwice, Poland (grant no. BKM-556/RAU2/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kostrzewa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostrzewa, D., Benecki, P., Jenczmyk, L. (2019). Enhancing the Resolution of Satellite Images Using the Best Matching Image Fragment. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11431. Springer, Cham. https://doi.org/10.1007/978-3-030-14799-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14799-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14798-3

  • Online ISBN: 978-3-030-14799-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics