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Abstract. Type classes in Haskell are used to implement ad-hoc poly-
morphism, i.e. a way to ensure both to the programmer and the compiler
that a set of functions are defined for a specific data type. All instances
of such type classes are expected to behave in a certain way and satisfy
laws associated with the respective class. These are however typically
just stated in comments and as such, there is no real way to enforce
that they hold. In this paper we describe a system which allows the user
to write down type class laws which are then automatically instantiated
and sent to an inductive theorem prover when declaring a new instance
of a type class.

1 Introduction

Type classes in Haskell are used to implement ad-hoc polymorphism, or overload-
ing [19]. They allow programmers to define functions which behave differently
depending on the types of their arguments. A type-class declares a set of (ab-
stract) functions and their types, and any datatype declared an instance of the
class has to provide implementations for those functions. Below is the Haskell
library type class Monoid, which declares the three abstract functions mempty,
mappend and mconcat:

class Monoid a where
mempty :: a
mappend :: a -> a -> a
mconcat :: [a] -> a

Usually, when we define a type-class we have some expectation on what
properties instances of this type class should satisfy when implementing the
functions specified. These are captured by type class laws. For monoids, any
instance is supposed to satisfy the laws below:

⋆⋆ This paper describes work from Anders Arvidsson’s and Robin Touche’s joint MSc
thesis at Chalmers [1], supervised by Moa Johansson.
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-- Left identity
mappend mempty x = x

-- Right identity
mappend x mempty = x

-- Associativity of mappend
mappend x (mappend y z) = mappend (mappend x y) z

-- Specification of mconcat
mconcat = foldr mappend mempty

The last law is in fact a specification for the default implementation of the
mconcat function, which is commonly used (unless the user wants to provide their
own, optimised, implementation). The last law then becomes a trivial identity.

Example 1. The most obvious instance of Monoid is probably Lists, but we
may for instance also declare the natural numbers to be monoids, with + corre-
sponding to mappend:

data Nat = Zero | Succ Nat

-- Natural number addition
(+) :: Nat -> Nat -> Nat
Zero + a = a
(Succ a) + b = Succ (a + b)

-- Natural number multiplication
(*) :: Nat -> Nat -> Nat
Zero * m = Zero
(Succ n) * m = m + (n * m)

-- Make Nat an instance of the Monoid type class
instance Monoid Nat where

mempty = Zero
mappend = (+)

We could also have declared Nat a monoid in a different manner, with with *

corresponding to mappend:

instance Monoid Nat where
mempty = Succ Zero
mappend = (*)

These instances of the Monoid class are quite simple. By just looking at them, we
might convince ourselves that they behave in accordance with the type class laws
for monoids, and settle for that. But what if we had a more complicated instance
or had made a mistake? Unfortunately, in Haskell, type class laws are typically
only stated in comments or documentation, if at all, and there is no support for
checking that an instance of a type class actually behaves in accordance with
the laws. Furthermore, type class laws could be used in, for example, compiler
optimisations. Any violation of the laws could then cause inconsistencies between
the original code and the optimised version, which is clearly undesirable.

To address these problems, Jeuring et al. developed a framework for express-
ing and testing type class laws in Haskell using the QuickCheck tool [9,3]. As
further work, they identify the need to also provide stronger guarantees by also



proving type class laws using an automated theorem prover. However, the type
class laws typically present in Haskell programs often involve recursive functions
and datatypes, which means that we might need induction to prove them. While
there has been much success using SMT-solvers and first-order theorem provers
for reasoning about programs, such provers, e.g. Z3 and E [6,14], typically do
not support induction. Some of the difficulties with inductive proofs is that they
often require auxiliary lemmas, which themselves require induction. A system
built to handle these kind of problems is HipSpec [4], a state-of-the-art auto-
mated inductive theorem for Haskell. Our contributions combine the ideas from
earlier work on testing type class laws with inductive theorem proving, and allow
us to:

– Write down type class laws in Haskell as abstract properties (§3.1), including
support for types with class constraints.

– Automatically instantiate these abstract properties when new instances of a
type class is declared, and translate them into a intermediate language called
TIP [11], suitable for passing on to automated theorem provers (§3.2).

– Send the generated conjectures to an automated inductive theorem prover for
proof, or output the result as a TIP-problem file. In the experiments reported
in this paper, we use the aforementioned HipSpec system for proofs (§4).

This allows us to state the type class laws abstractly only once, and automatically
infer and prove the concrete properties that any new instance need to satisfy to
comply with the type class laws.

2 Background: HipSpec and TIP

HipSpec allows the user to write down properties to prove in the Haskell source
code, in a similar manner to how Haskell programmers routinely write QuickCheck
properties. HipSpec supports a subset of the core Haskell language, with the
caveat that functions are currently assumed to be terminating and values as-
sumed to be finite. HipSpec can, if required, apply induction to the conjectures
it is given, and then send the resulting proof obligations to an external theorem
prover, such as Z3, E or Waldmeister [6,14,8]. The power of HipSpec comes from
its theory exploration phase: when given a conjecture to prove, HipSpec first use
its subsystem QuickSpec [5,15], which explores the functions occurring in the
problem by automatically suggesting a set of potentially useful basic lemmas,
which HipSpec then proves by induction. These can then be used in the proof
of the main conjecture. However, as theory exploration happens first, HipSpec
sometimes also proves some extra properties, perhaps not strictly needed. We
consider this a small price for the extra power theory exploration provides.

Example 2. As a small example, consider asking HipSpec to prove that our
natAdd function from the introduction indeed is commutative. The Haskell file
is annotated with the property we wish to prove:

prop_add_commute x y = x + y === y + x



The symbol === denote (polymorphic) equality in HipSpec properties. Calling
HipSpec on this file instantly produces the output:

Proved :
(m + n) === (n + m)
(m + (n + o)) === (n + (m + o))
prop_add_commute x + y === y + x

Notice that HipSpec has printed out two properties it discovered and proved itself
during its theory exploration phase (one of which is identical to the property we
stated!). Proving prop add commute is then trivial.

The TIP language. TIP is a general format for expressing problems for induc-
tive theorem provers based on SMT-LIB [2], extended with support for datatypes
and recursive functions. The latest version of HipSpec also supports the TIP-
language [11] as input in addition to Haskell. In our work, we use TIP as an
intermediate language into which Haskell functions, types and properties are
translated in order to facilitate passing them on to various external theorem
provers.

We will not give an in depth description of the syntax of TIP here, save
for a small example of the property we saw above, namely that addition is
commutative:

(assert -not (forall ((x Nat )) (= (plus x y) (plus y x))))

The keyword assert-not is used to tell the prover which properties to attempt to
prove (this is inherited from SMT-LIB, where proofs are by refutation). Similarly,
the keyword assert is used to tell the provers which properties are to be treated
as axioms.

The ambition of TIP is to provide a shared format for many inductive theo-
rem provers, thereby making it easier to share benchmarks and compare differ-
ent provers. There exists a growing number of benchmarks for inductive theorem
provers written in the TIP language, and a suite of tools for translating TIP into
various common input formats for automated theorem provers such as SMT-LIB
and TPTP [13,17]. We make use of the TIP language when instantiating type-
class laws as described in the next section. The advantage is that this allows us
to, in the future, more easily experiment with other inductive theorem proving
backends, not only HipSpec. Furthermore, any inductive problems which the the-
orem prover cannot prove, can be added to the TIP benchmark suite to provide
developers with additional challenge problems.

3 Instantiating Type Class Laws

In the previous section, we showed how HipSpec has traditionally been used,
with the user annotating the source file with properties to prove. In a sense,
HipSpec has been used mainly as a theorem prover, which just happened to take
(a subset of) Haskell as input. In this work, we want to be able to handle more



of the Haskell language, and thereby take a step towards building a more useful
tool also for programmers, and not just as a theorem prover with Haskell as
input.

3.1 Expressing Type Class Laws

Type class law are expressed almost as normal HipSpec properties, using much
of the same syntax as in Example 2. The difference is that the type class laws use
abstract functions, i.e. functions which need to be supplied concrete definitions
for the class instances. This is reflected in the type signature of the law, which
contains type variables with class constraints. These abstract laws will give rise
to multiple different versions specialised for each individual instance of that class.
The type-class laws can be declared at the same time as the type-class itself, and
later automatically instantiated when an instance of the corresponding type-class
is declared.

Example 3. Consider one of the type class laws for monoids which we have en-
countered before. As an abstract HipSpec property, it is defined as follows:

mappendAssoc :: Monoid a => a -> a -> a -> Equality a
mappendAssoc x y z =

mappend x (mappend y z) === mappend (mappend x y) z

Notice that the type variable a is required to be a Monoid in the type signature.
Equality is HipSpec’s type for equational properties to prove, and is represented
using ===.

3.2 Instantiating Laws

HipSpec and TIP does currently only supports fully polymorphic type variables,
i.e. type variables which have no constraints on the values they can assume. Since
type class laws contain type variables with such constraints (e.g. the constraint
that a must be a monoid in Example 3), they must be converted into specialised
versions for each instance of the type class. This is rather straight-forward, and
done by manipulating the GHC Core expressions resulting from compilation. For
each type variable constrained by a type class, we first simply replace it with
the type of all possible instances defined in the current file (if there are any).

The type class law mappendAssoc from Example 3 will for the Nat instance
we saw before become automatically instantiated as shown below:

mappendAssoc1 :: Nat -> Nat -> Nat -> Equality Nat
mappendAssoc1 x y z =

mappend x (mappend y z) === mappend (mappend x y) z

In the interest of readability of the example, we give the property in a Haskell-
like syntax, rather than in GHC Core, but emphasise that this is part of an
automated step in the implementation, and nothing the user will ever see as
output. Notice that the type constraint Monoid a has disappeared.



GHC Core implements type classes by dictionary passing, i.e. when an over-
loaded function, like mappend is called, a lookup in the dictionary provides the
appropriate concrete instance. For increased readability of the generated TIP-
code, we inline dictionary lookups and rename them with more informative new
names.

MonoidNatmappend x ( MonoidNatmappend y z) ===
MonoidNatmappend (MonoidNatmappend x y) z

The new function MonoidNatmappend is included in the resulting TIP file, defined
as the corresponding function from Example 1 (i.e. + or *, depending on which
Monoid instance we are considering).

3.3 Superclasses and Instances with Constraints

Sometimes, it is appropriate to include some additional information in the gen-
erated TIP problem file, other than the function definitions and instances of the
type class laws. This includes, for example, assumptions that superclass laws are
inherited by its subclasses and assumptions about laws that ought to hold about
constrained type variables. Both cases are handled by introducing a new dummy
type about which we can assert those extra facts.

Superclass Laws. Haskell type classes may be defined as subclasses of already
existing type classes. For instance, the type class Ord, used for totally ordered
datatypes, is an extension of the type class for equality, Eq:

class Eq a => Ord a where
...

This means that instances of Ord must also be instances of Eq, otherwise the
compiler will complain. When generating instances of type class laws, we have
therefore made the design decision to assume that all the superclass laws hold
when attempting to prove the corresponding subclass laws. For example, this
means assuming that the laws for Eq holds while proving the laws for a new
instance of Ord. In other words, we assume that the Eq laws were already proved
before, when a was declared an instance of Eq. This allows us to handle our proofs
modularly, treating each type class in isolation and not having to worry about
long chains of dependencies between type classes. The generated TIP file which
we pass to the theorem prover must therefore include the super class laws as
axioms holding for the type a. To achieve this, the type variable a is substituted
by an arbitrary dummy datatype, about which we may include such assertions.

Constrained Class Instances. Another similar scenario is when the class
instance itself has a constrained type variable in its declaration. This is often
the case for polymorphic data types, for example Maybe a if declaring it an
instance of Monoid like in the example below:



instance Monoid a => Monoid (Maybe a) where
...

In this case we need to take a little more care when instantiating the type
class laws; we cannot simply replace the type variable a in the Monoid a con-
straint by all its possible instances, as this includes Maybe a itself, as well as
Maybe(Maybe(...)) and so on. Clearly this is not what’s intended. Instead, we
will interpret this to mean that: Assuming that the type a is a Monoid, satisfy-
ing the associated type class laws, then prove that Maybe a does too. Just as for
superclasses, we now substitute a for a new concrete dummy type, about which
we can assert the laws for monoids, and use them when proving the laws for
Maybe.

4 Proving Type Class Laws

Once the TIP files has been generated they are automatically piped through to
an inductive theorem prover. Here we use HipSpec, but some other inductive
theorem prover could equally well be integrated in our architecture as long as
it supports TIP as input. We have focused the experiments presented here to a
number of type classes where many of the laws are a little bit harder to prove
than for basic type classes (such as Eq) and may require induction. A longer
evaluation on additional examples can be found in the MSc thesis accompanying
this paper, but omitted here due to limited space [1].

The experiments presented here use a development version of the HipSpec
system, which includes improvements such as native support for the TIP-format
as input, and options for more informative proof output which explains the steps
of the proofs. However, unlike the previous version of HipSpec (described in [4]),
the new version does not, at the time of writing, fully support higher-order
functions. We have therefore not yet been able to prove all laws of common type
classes such as Monoid, Functor and Monad. Addressing this issue is ongoing
work. Our tool can however output problem files in TIP-format also for type-
classes containing higher-order functions.

4.1 Experimental Results

The timings in the experiments were obtained on a laptop computer with an In-
tel Core i7-3630QM 2.4 GHz processor and 8 GB of memory, running Arch Linux
and GHC version 7.10.3. The source files for all the experiments are available on-
line from: https://github.com/chip2n/hipspec-typeclasses/src/Evaluation/.

In the experimental results, we use the symbol ✓ to denote a successful proof,
✗ to denote prover failure for a true law, and ! to denote prover failure on a law
violation, i.e. on a false instance of a law. HipSpec does not currently give counter-
examples for laws that do not hold. For laws that cannot be proved, the user will
have to use a separate tool like QuickCheck to check if a counter example can be
found to indicate a law violation, as opposed to a true law which is beyond the

https://github.com/chip2n/hipspec-typeclasses/src/Evaluation/


provers automated capabilities. In the future, we would like to combine HipSpec
with previous work on testing type class laws [9], to resolve this.

Semiring. Our first experiment comes from algebra, and is about semirings. A
semiring is a set coupled with operators for addition (+) and multiplication (*),
as well as identity values for both of them. As a Haskell type class, this can be
expressed as:

class Semiring a where
zero :: a
one :: a
(+) :: a -> a -> a
(*) :: a -> a -> a

The following eight laws are supposed to hold for semirings:

1. (a+ b) + c = a+ (b + c)
2. 0 + a = a+ 0 = a

3. a+ b = b+ a

4. (a ∗ b) ∗ c = a ∗ (b ∗ c)
5. 1 ∗ a = a ∗ 1 = a

6. a ∗ (b+ c) = (a ∗ b) + (a ∗ c)
7. (a+ b) ∗ c = (a ∗ c) + (b ∗ c)
8. 0 ∗ a = a ∗ 0 = 0

We experimented with the following four instances of semirings:

Nat: Natural numbers with addition and multiplication and identities 0 and 1.
Bool (1): Disjunction for addition and conjunction for multiplication with

identities False and True
Bool (2): Conjunction for addition and disjunction for multiplication with

identities True and False
Matrix2: A 2-by-2 matrix with matrix addition and multiplication and iden-

tities empty matrix and identity matrix respectively, and entries belong to
another semiring1.

Results: Semiring

Instance Law Total time
1 2 3 4 5 6 7 8

Nat ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 28.2 s
Bool (1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2.9 s
Bool (2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2.9 s
Matrix2 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ 29.3 s

Most of these proofs are rather easy for HipSpec, except the distributivity prop-
erties for matrices (laws 7 and 8, which hold but are not proved here). We conjec-
ture that this is due to the fact that HipSpec has not been told anything about
auxiliary functions for summations of matrix elements row/column-wise, which

1 The elements must belong to a semiring for the square matrix to do so.



is required here. Notice that in the case of the natural numbers and matrices,
HipSpec spends more time doing theory exploration, and inventing lemmas. For
the booleans, the proofs are straight-forward and do not even need induction.

CommutativeSemiring. To demonstrate a type class which depend on a su-
perclass, we also included a commutative semiring in our evaluation.

class Semiring a => CommutativeSemiring a

As the name suggests, a commutative semiring is a semiring with one additional
law stating that * is commutative:

1. a ∗ b = b ∗ a

We tested the same instances as for semirings:

Results: CommutativeSemiring

Instance Law Total time
1

Nat ✓ 21.0 s
Bool (1) ✓ 2.8 s
Bool (2) ✓ 2.5 s
Matrix2 ! 11.9 s

As expected, natural numbers and booleans can easily be shown to also be
commutative semirings. Note that the matrix instance fails as expected; matrix
multiplication is not commutative.

Reversible. The next type class characterise data structures that can be re-
versed:

class Reversible a where
reverse :: a -> a

It has one law, stating that reverse is idempotent:

1. reverse (reverse xs) = xs

We tested the following three instances:

List (rev): Naive recursive list reverse.
List (qrev): List reverse using accumulator.
Tree: A binary tree with a mirror operation, flipping the tree left to right.

Results: Reversible

Instance Law Total time
1

List (rev) ✓ 5.9 s
List (qrev) ✓ 5.7 s
Tree ✓ 0.9 s

All these proofs require induction, and the ones about lists also need auxiliary
lemmas which HipSpec must discover and prove first. However, as there is only
very few functions and laws present (unlike for semirings), this is rather fast.



Monoid. We have already encountered the Monoid type class as a running
example.

1. mappend mempty x = x

2. mappend x mempty = x

3. mappend x (mappend y z ) = mappend (mappend x y) z

We here omit the 4th law (the default implementation for mconcat) which is
higher-order and, as mentioned above, not yet supported in the development
version of HipSpec we are using. We give the results for the remaining three laws,
and do so for the datatype instances we have seen before. The Matrix2 instance
has the additional constraint of requiring its elements to also be monoids, and
similarly, Maybe a has a constraint requiring a to be a monoid.

Results: Monoid

Instance Law Total time
1 2 3

Nat (add) ✓ ✓ ✓ 4.3 s
Nat (mul) ✓ ✓ ✓ 27.3 s
Matrix2 (mul) ✓ ✓ ✓ 2.3 s
List ✓ ✓ ✓ 1.5 s
Maybe ✓ ✓ ✓ 2.1 s

Laws 1 and 2 for monoids are rather trivial. The only instance needing slightly
longer is when mappend is instantiated to natural number multiplication, in
which law 3 needs some lemmas to be discovered and proved.

4.2 Discussion of Results and Further Work

The proof obligations resulting from the type classes above are mainly within the
comfort zone of an inductive theorem prover such as HipSpec. Usually, the prover
just needs a few seconds to complete the proofs, unless it has discovered many
candidate lemmas during the theory exploration phase. This is the downside
of using HipSpec: it sometimes eagerly spends some time proving lemmas that
turn out not to be necessary for the final proof. Targeting the exploration by for
example attempting to extract information from failed proofs is further work.

It is somewhat disappointing that we have not yet been able to automatically
prove any higher-order laws, but hope that it is merely a matter of time until
support has been added also to the new version of HipSpec. The lack of higher-
order support is not inherent to the new version of HipSpec, but due to an
incomplete module in HipSpec for reading in TIP files. We could have opted for
using an old version of HipSpec, but it does not support TIP as an input language,
and we would have had to instead produce modified copies of the original Haskell
source files to give to the prover. This would likely have meant less automation
of the whole proving pipeline. Furthermore, the new version of HipSpec uses
the latest version of QuickSpec for lemma discovery [15], which is much faster
and more powerful that the old version. We also think it is valuable to output



the instantiated laws and proof obligations in the TIP format, which can more
easily be shared between different theorem proving systems. This means that
we are not actually bound to just a single theorem prover (HipSpec), but can
quite easily connect our work also to other provers, should a better one become
available. Furthermore, the user could edit the TIP file output by our tool to for
example add extra facts that the prover did not discovery automatically.

HipSpec’s proof output depends on which external prover it uses for proof
obligations. Details of the rewriting steps can be presented to the user when
Waldmeister is used [8], but we often want to use other more powerful provers
such as Z3 [6]. Adding richer proof output for additional prover backends, counter-
examples for laws violations and other user feedback about failed proofs is further
work. This has however been partially addressed in HipSpec’s sister system Hip-
ster, which shares the same theory exploration component, but is integrated in
the interactive proof assistant Isabelle/HOL [12,10] for proofs. Hipster produces
snippets of Isabelle proof scripts for discovered lemmas.

HipSpec currently assumes that functions to be terminating and values are
finite. There is however nothing in principle that would stop us from, for example,
connecting HipSpec to a termination checker and extending it with for instance
co-induction to reason about infinite structures.

5 Related Work

Zeno is an earlier inductive theorem prover for Haskell [16], which is unfortu-
nately no longer maintained. Unlike HipSpec it had its own internal theorem
prover, while HipSpec is designed around the TIP language for easier commu-
nication with different external provers used to handle proof obligations arising
after applying induction. Zeno did not support theory exploration but instead
conjectured lemmas based subgoals remaining in stuck proofs.

HERMIT [7] is a system for mechanising equational reasoning about Haskell
programs. Properties are written as GHC rewrite rules in the Haskell source
code and proven either interactively in the HERMIT shell or by writing a script
which automates the process. As opposed to HipSpec, which is fully automatic
and exploits external theorem provers, HERMIT is an more of an interactive
proof assistant relying on the user to specify the steps of proofs. HERMIT also
requires the user to supply all lemmas, and does not support any form of theory
exploration like HipSpec.

LiquidHaskell is a contract-based verification framework based on refinement
types [18]. Refinement types are essentially the addition of logical predicates to
‘refine’ the types of inputs and outputs to functions. These predicates are re-
stricted to theories with decision procedures, which ensures contracts are written
in a logic suitable for being checked by a SMT solver. LiquidHaskell is a more
mature system than HipSpec, but restricted to decidable theories so it does not
support automated induction and theory exploration.



6 Conclusion

This work demonstrates how automated theorem proving and functional pro-
gramming can be integrated to provide benefit to programmers. We showed how
type class laws can be expressed as abstract properties, then instantiated and
proved when we declare a new instance of a type class. Moving type class laws
from informal descriptions in the documentation to something that is actually
enforced would both help programmers to a shared understanding of the purpose
of the type class as well as helping them implement instances correctly.

Many Haskell programmers are today routinely writing QuickCheck proper-
ties which are automatically tested on many randomly generated values. In the
future, we envisage programmers writing similar properties and laws, and using
a tool similar to what’s described here to not only test, but also prove their
programs correct, with little more overhead than using QuickCheck. We believe
our work is at least a small step on the way towards this ambitious goal.
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