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Abstract. String covers are a powerful tool for analyzing the quasi-
periodicity of 1-dimensional data and find applications in automata the-
ory, computational biology, coding and the analysis of transactional data.
A cover of a string T is a string C for which every letter of T lies within
some occurrence of C. String covers have been generalized in many ways,
leading to k-covers, λ-covers, approximate covers and were studied in dif-
ferent contexts such as indeterminate strings.

In this paper we generalize string covers to the context of 2-dimensional
data, such as images. We show how they can be used for the extraction
of textures from images and identification of primitive cells in lattice
data. This has interesting applications in image compression, procedural
terrain generation and crystallography.

1 Motivation

Redundancy is an ubiquitous phenomenon in engineering and computer science
[18,19]. Periodicity is the most common and useful form of redundancy. Peri-
odicity is a key phenomenon when analyzing physical data such as an analogue
signal. Natural data is very redundant or repetitive and exhibits some patterns
or regularities [11,23,24] which we may assert to be the intended information [21]
within the data. Periodicity itself has been thoroughly studied in various fields
such as signal processing [22], bioinformatics [8], dynamical systems [14] and
control theory [6], each bringing its own insights.

However, natural data is imperfect. It is highly unlikely that natural data can
ever be periodic. In fact, the data is almost or quasi-periodic [4]. This has been
firstly studied over strings, the most general representation of digital data [17].

For example, assume that we want to send the word aba over a noisy channel
as a digital signal where letters are modulated using amplitude shift keying [17].
Since the simple transmission is unlikely to yield the result due to the imperfect
transmission channel, we add redundancy and thus send the word aba multiple
times. However, when errors occur, the received signal only partially retains its
periodicity.
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2 Our Results

In this paper we study the generalization of the String Cover operator on finite-
dimensional images. First, throughout this paper, given two integers a and b,
a ≤ b, we define a, b = {a, a + 1, . . . , b}. Then a 2-dimensional string (or an
image) is function I : 0, H − 1 × 0,W − 1 → Σ, where Σ is the alphabet. Let
MatH,W be the set of all matrices with H rows and W columns. For a matrix
M we define M i

j to be the element from row i and column j.

Definition 1 (2-dimensional string cover). A cover of a 2D image T is a
2D image C for which every element of T lies within some occurrence of C.

In Section 3, we find two alternative ways of formalizing the 2D cover prob-
lem, by using masks and prove their equivalence. We then turn our attention
towards the decision problem:

Problem 1 (Image Cover Decision). Given two images T and C, does one cover
the other?

We give an O (WH) algorithm based upon Bird’s 1977 [7] 2-dimensional
matching algorithm. Then, using this algorithm we study the minimization prob-
lem (Section 4).

Problem 2 (Weak Minimal Image Cover). Given an image T ∈ MatH,W (Σ)
and an evaluation function eval : 1, h × 1, w → R, where h ≤ H and w ≤ W ,
which induces an order onto the covers, which is the cover C ∈ Math,w (Σ) of T
minimal with respect to eval (h, w)?

We give an O
(

W 2H2
)

Θ (eval) algorithm. Since the minimization problem
is actually Ω (WH)Θ (eval), we aim for a better algorithm. Using sorting of
the input candidates according to eval we obtain O (nWH)Θ (eval) (the bound
does not contain the time necessary for sorting), where the n-th entry in the
vector sorted by eval determines a cover of T . Note that to assume that the
candidates are sorted is not in general realistic, so a more honest complexity
bound is O (WH (n+ log (WH)Θ (eval))). However, there is a very important
optimization criterion where the sorting is very cheap, namely the size of an
image.

Problem 3 (Strong Minimal Image Cover). Given an image T ∈ MatH,W (Σ)
which is the cover C ∈ Math,w (Σ) of T minimal with respect to its area (that
is, wh), ℓ1 norm (that is, w + h) and ℓ∞ norm (that is, max (w, h))?

For this problem we augment the general minimization algorithm with a
preprocessing routine, based on the optimal 1-dimensional Minimal String Cover
algorithm [5], which reduces the number of candidate pairs that we have to check
from Θ (WH) to O (1) on the average case, reducing the complexity to Θ (WH)
on the average case and, particularly, O (W ) in the worst-case for H = 1. We
argue that the use of this routine never hinders performance and offers the same
boost for the general case of an unknown eval function.



We conclude the article with a few very interesting applications of other
generalizations of the Minimal String Cover Problem (Sections 5 and 6) such as
k-covers [12] and the Approximate String Cover Problem introduced by Amir
et al. [3,2] to lattice unit-cell recognition from generic images, detection of the
unit cells of some quasicrystals [25], extraction of the elementary set of tiles in a
Wang Tiling, recognizing the minimal (quasi)periodic Wang Tile pattern in an
image and the minimal modification required of an image for the existence of a
non-trivial minimal (quasi)periodic Wang Tile pattern.

3 Image Covers

The simplest class of images is that of binary images, i.e. Σ ∼= {0, 1}. Binary
images can be thought of as sets over Z2, as follows: the set contains the position
(i.e., row and column) of the elements of the binary image that have value 1.

Example 1. The set {(1, 2), (2, 2), (3, 3)} corresponds to the image





0 1 0
0 1 0
0 0 1



 .

Given a set S and an element x, the characteristic function of S, denoted by
χS(x) has value 1 if x ∈ S, and 0 otherwise.

Definition 2. A mask of an image T with respect to an image C is a binary
image M which marks the first position of some occurrences of C in T .

Formally if T ∈ MatH,W (Σ) and C ∈ Math,w (Σ) then M ∈
MatH,W ({0, 1}) is a mask of T with respect to C if

∀i ∈ 1, H, j ∈ 1, W , M i
j = 1 ⇒ T i+y−1

j+x−1 = Cy
x , y ∈ 1, h, x ∈ 1, w.

By the correspondence between binary images and sets, there exists a maxi-
mal mask with respect to cardinality and it identifies all occurrences of an image
in another.

Definition 3. The maximal mask of an image T with respect to an image C is
a binary image M∗ which marks the first position of all occurrences of C in T .

Formally if T ∈ MatH,W (Σ) and C ∈ Math,w (Σ) then M∗ ∈
MatH,W ({0, 1}) is the maximal mask of T with respect to C if

∀i ∈ 1, H, j ∈ 1, W ,M∗i
j = 1 ⇐⇒ T i+y−1

j+x−1 = Cy
x , y ∈ 1, h, x ∈ 1, w.

Extrapolating from the definition of string covers, we can informally define a
cover of an image. A cover of an image T is an image C for which every element
of T lies within some occurrence of C. We can formalize this definition using
masks. We introduce two equivalent definition candidates.



Definition 4 (Weak Image Covers).
If T ∈ MatH,W (Σ) and C ∈ Math,w (Σ), then C covers T if there exists

some mask M of T with respect to C such that:

∀Y ∈ 1, H, X ∈ 1, W ∃i ∈ Y − h+ 1, Y , j ∈ X − w + 1, X M i
j = 1.

Equivalently, we may define Image Covers with respect to the maximal mask:

Definition 5 (Strong Image Covers).
If T ∈ MatH,W (Σ) and C ∈ Math,w (Σ), then C covers T if the maximal

mask M∗ of T with respect to C is such that:

∀Y ∈ 1, H, X ∈ 1, W ∃i ∈ Y − h+ 1, Y , j ∈ X − w + 1, X M∗i
j = 1

By these definitions a cover C ∈ Math,w (Σ) of an image T ∈ MatH,W (Σ)
can be identified with the (h, w) pair.

The weak definition is a more natural extension of the definition of String
Covers, while the strong definition provides us with a more clear understanding of
the combinatorial properties of Image Covers. For example, the strong definition
suggests that Image Covers are susceptible to dynamic programming, which we
later use to obtain the minimal cover.

Theorem 1. The weak and strong definitions are equivalent.

Proof. Consider the set S = 1, H × 1, W . There exists a bijection between
its power set, P (S), and the W-long, H-tall binary images MatH,W ({0, 1}) as
explained at the beginning of the section. Formally, the bijection f is defined as

P (S) ∋ S ↔ f(S) ∈ MatH,W ({0, 1}) : f(S)ij = χS ((i, j))∀i ∈ 1, H, j ∈ 1, W .

However, the image of the Boolean algebra (P (S) , ∪, ∩, .̄, ∅, S) is thus by
f onto MatH,W ({0, 1}). The new structure can be verified to be

(MatH,W ({0, 1}) , max, min, M → 1−M, 0, 1)

Thus the image of the inclusion order ⊆ is the order ≤ and so, if there exists
a mask M such that

∀Y ∈ 1, H, X ∈ 1, W ∃i ∈ Y − h+ 1, Y , j ∈ X − w + 1, X M i
j = 1

then since M ≤M∗ we also have

∀Y ∈ 1, H, X ∈ 1, W ∃i ∈ Y − h+ 1, Y , j ∈ X − w + 1, X M∗i
j = 1

and vice versa: if M∗ satisfies the later, then there exists at least one such mask
M (preciselyM∗) which satisfies the former. Thus, the two definitions are indeed
equivalent. ⊓⊔

While from a formal standpoint the two definitions are equivalent, from a
computational standpoint it is more convenient for us to work with the strong
definition, since we do not have to consider all masks.



Lemma 1. Given two images T ∈ MatH,W (Σ) and C ∈ Math,w (Σ) the con-
struction of the maximal mask of T with respect to C takes Θ (WH) time.

Proof. Since the size of the output is WH we have the lower bound Ω (WH).
We effectively only have to prove the upper bound of O (WH).

We begin by studying the case H = 1. In this case the maximal mask of T
with respect to C consists of all occurrences of C in T . This can be found in
linear time, for example using the Knuth-Morris-Pratt algorithm (KMP [15]),
with a runtime of O (W + w), which is O (WH) since H = h = 1 and w < W .

For the case H 6= 1, we look for a two dimensional generalization of the
Knuth-Morris-Pratt algorithm. One such generalization is Bird’s algorithm [7]
which uses KMP and a generalization of it due to Aho and Corasick [1] to find
the rows and then columns where the pattern occurs.

The output of Bird’s algorithm is the list of occurrences of C in T , i.e.
the pairs (i, j) such that M∗i

j = 1. Consequently, we can recover M∗ by

taking M∗i
j = stage (i+ h− 1, j + w − 1). This yields the maximal mask in

O (WH + wh) = O (WH) time. ⊓⊔

Theorem 2 (Image Cover Decision). Given two images T ∈ MatH,W (Σ)
and C ∈ Math,w (Σ) checking if C is a cover of T takes Θ (WH) time (Algo-
rithm 1).

Proof. We can instantly disqualify images C having h > H or w > W . Other-
wise, since we must at least read T , the decision problem is at least Ω (HW ).
Thus, we prove only the upper bound, O (WH).

By Lemma 1 we computeM∗ in O (WH) time. We now check ifM∗ “tiles up
to” T , as per Definition 5. Thus we check that every (x, y) of T belongs to some
occurrence of C, whose north-west corner is located at some point in D(x, y),
where

D (x, y) = {(x− w + 1, y − h+ 1) ≤ (x′, y′) ≤ (x, y) |M∗y
′

x′ = 1}.

At this point we could simply walk throughM∗ and check that every location
is indeed covered. However since there are up to O (WH) occurences of C in T
the naive aproach takes O

(

W 2H2
)

time.

For the rest of the proof we show that we can compute whether there exists
some (x, y) for whichD (x, y) = ∅ in O (WH). We call points for whichD (x, y) 6=
0 admissible and points for which D (x, y) = 0 inadmissible. We say that the
points D (x, y) “support” the hypothesis that (x, y) is admissible.

Let ≤lex be the lexicographical order and the function N (x, y) be the closest
(north-west corner of an) occurrence of C form (x, y), i.e.

N (x, y) = argmin
≤lex

{(x− x′, y − y′) | (x′, y′) ∈ D (x, y)},

for which, by definition, N (x, y) = (∞,∞) if and only if D (x, y) = ∅.



Note that if the minimal support for the western neighbor of a point,
N (x− 1, y), does not support it, then (x, y) is the only point that can sup-
port itself but not its northern neighbor, (x, y − 1), i.e.

N (x− 1, y) 6∈ D (x, y) ⇒M∗y
′

x′ = 0 ∀x′ ∈ x− w + 1, x− 1, y′ ∈ y − h+ 1, y ⇒

⇒ D (x, y) ⊆ D (x, y − 1) ∪ {(x, y)}.

Similarly, if the minimal support for the northern neighbor of a point,
N (x, y − 1), does not support it, then (x, y) is the only point that can sup-
port itself but not its western neighbor, (x− 1, y), i.e.

N (x, y − 1) 6∈ D (x, y) ⇒M∗y
′

x = 0 ∀y′ ∈ y − h+ 1, y − 1 ⇒

⇒ D (x, y) ⊆ D (x− 1, y) ∪ {(x, y)}.

By the above, if neither minimal support for the western and northern neigh-
bors supports (x, y) then only (x, y) may support itself, i.e.

N (x, y − 1) 6∈ D (x, y) , N (x− 1, y) 6∈ D (x, y) ⇒

⇒M∗y
′

x′ = 0 ∀x′ ∈ x− w + 1, x, y′ ∈ y − h+ 1, y, (x′, y′) 6= (x, y) ⇒

⇒D (x, y) ⊆ {(x, y)}.

Moreover, if (x1, y1) ≤lex (x2, y2) we have

(x1 − x∗1, y1 − y∗1) ≤lex (x1 − x′1, y1 − y′1) ⇔

⇔ (x2 − x∗, y2 − y∗) ≤lex (x2 − x′, y2 − y′)

and thus, if (x′, y′) supports both (x, y) and one of its western or northern
neighbors, but is not the minimal support of that neighbor, then it is not the
minimal support of (x, y). We obtain the dynamic programming scheme

N (x, y) ∈ {N (x− 1, y) , N (x, y − 1) , (x, y)}.

This scheme can be implemented in O (WH) time as shown in Algorithm 1.
We have proven that it correctly decides whether the maximal mask does indeed
cover the entire image, i.e. C is a cover of T . We conclude that the complexity
of the decision problem is indeed Θ (WH). ⊓⊔

4 Minimal Image Covers

Among the family of covers of an image T , our goal is to find a “minimal” one.
To achieve this goal we have to define the optimization criterion. This criterion
takes the form of an evaluation function: eval : 1, W × 1, H → R̄.

Proposition 1. Obtaining the minimal image cover C of T with respect to eval
takes time O

(

W 2H2 +WHΘ (eval)
)

.



Algorithm 1 Image Cover Decision

1: procedure Check(T , w, h)
2: Preprocess T (per Bird’s algorithm)
3: for x ∈ 1, H do

4: for y ∈ 1, W do

5: N (x, y) = (−∞, −∞)
6: if x > 1 and (x− w + 1, y − h+ 1) ≤ N (x− 1, y) then
7: N (x, y) = N (x− 1, y)
8: end if

9: if y > 1 and (x− w + 1, y − h+ 1) ≤ N (x, y − 1) then
10: if (x, y)−N (x, y − 1) ≤lex N (x, y)−N (x, y − 1) then
11: N (x, y) = N (x, y − 1)
12: end if

13: end if

14: if stage (y, x) (per Bird’s algorithm) then

15: N (x, y) = (x, y)
16: end if

17: if N (x, y) = (−∞, −∞) then
18: return Mismatch: (x, y)
19: end if

20: end for

21: end for

22: return Match
23: end procedure

Proof. A brute force approach checks all possible (w, h) pairs (which are
Θ (WH)) and uses the decision algorithm above. If a cover is found it is evalu-
ated. This yields complexity O

(

W 2H2 +WHΘ (eval)
)

.

Moreover, if eval is arbitrary all (w, h) pairs must be checked since eval (.)
can be unbounded (or some large finite value) for all (w, h) except (w∗, h∗) which
shows the bound is tight. ⊓⊔

Proposition 2. If the minimal C is the n-th candidate according to the order
induced by eval, we can obtain C in O (nWH) if the input is already sorted
according to this order.

Proof. If the ordering induced by the eval function is known, we queue up the
would-be covers in that order (by sorting for example). For instance, if the
n-th candidate is the first cover encountered, the runtime of the minimization
algorithm described above is O (WHΘ(eval) + nWH). This can be achieved via
sorting, yielding a complexity of

O(WHΘ(eval) +WH log(WH) + nWH)

⊓⊔



4.1 The Size Criteria

We now study minimality with respect to a natural criterion, namely the size,
as given by the area, ℓ1 norm and ℓ∞ norm.
For the area, the evaluation function is defined as

1, W × 1, H ∋ (w, h) → eval (w, h) = wh ∈ R.

Suppose we knew that wh ≤ w0h0. Then we have

h ∈ 1, min (⌊w0h0/w⌋, H),

and thus (w, h) is one of the lattice points of the intersection
of the rectangle ((1, 1) , (1, H) , (W, 1) , (W, H)) with the triangle
((1, 1) , (1, w0h0) , (w0h0, 1)).

These contain at mostWH and w2
0h

2
0/2 lattice points respectively. Thus, the

optimal (w, h) pair is found after at most n ≈ O
(

min
(

w2
0h

2
0, WH

))

attempts

which leads to an upper bound of O
(

min
(

w2
0h

2
0, WH

)

WH
)

.

For the ℓ1 norm the evaluation function is

1, W × 1, H ∋ (w, h) → eval (w, h) = w + h ∈ R.

Suppose we knew that w + h ≤ w0 + h0. Then we have

h ∈ 1, min (w0 + h0 − w, H),

and thus (w, h) is one of the lattice points of the intersection
of the rectangle ((1, 1) , (1, H) , (W, 1) , (W, H)) with the triangle
((1, 1) , (1, w0 + h0 − 1) , (w0 + h0 − 1, 1)).

These contain at most WH and (w0 + h0)
2
/2 lattice points respectively.

Thus, the optimal (w, h) pair is found after at most n ≈ O
(

min
(

w2
0 + h20, WH

))

attempts which leads to an upper bound of O
(

min
(

w2
0 + h20, WH

)

WH
)

.

For the ℓ∞ norm the evaluation function is defined as

1, W × 1, H ∋ (w, h) → eval (w, h) = max (w, h) ∈ R.

Suppose we knew that max (w, h) ≤ max (w0, h0). Then we have

h ∈ 1, min (max (w0, h0) , H),

and thus (w, h) is one of the lattice points of the intersection
of the rectangle ((1, 1) , (1, H) , (W, 1) , (W, H)) with the square
((1, 1) , (1, max (w0, h0) , ) , (max (w0, h0) , 1) , (max (w0, h0) , max (w0, h0))).

These contain at most WH and max (w0, h0)
2

lattice points respec-
tively. Thus, the optimal (w, h) pair is found after at most n ≈

O
(

min
(

max (w0, h0)
2
, WH

))

attempts which leads to an upper bound of

O
(

min
(

max (w, h)
2
, WH

)

WH
)

.



Note that we never used w0 or h0 other than for the calculation of the
algorithm runtime. Thus, these calculations remain valid even if we do not know
anything about w0 and h0. Their value is automatically substituted for the width
and height of the minimal cover.

4.2 Boosting Average Performance by Preprocessing

In many cases, we do not have to verify all candidates. For instance, if the
candidate a (w, h) is a cover, then the first and the last w columns and h rows

are image-covered by T 1, w

1, h
. Based on this criterion we construct a preprocessing

routine.

Suppose we knew that h ≥ h0. This means that C is at least h0-tall. Hence,

T 1,W

1, h0

covers T 1,W

1,H
. Note that M∗i

j = 0∀j ≥ 2 since there is not enough space

to accomodate another tile horizontally. Consequently, T 1,w
i covers T 1,W

i for all

i ≤ h0 or i ≥ H − h0. Thus if Ci are all the covers of T 1,W
i then

w ≥ min
{

|c| | c ∈ Ci, ∀i ∈ 1, h0 ∪H − h0, H
}

This bound can be calculated in O (Wh0). Since C is a cover of T if and only
if CT is a cover of T T , if we knew that wC ≥ w0 then hC′ ≥ w0 and hence we
can similarly obtain a lower bound for wC′ = hC in O (Hw0).

Suppose we knew that w ≥ w0 and h ≥ h0. It takes O (Wh0 + w0H) to check
that this first test does not already disprove the eligibility of (w0, h0). Notably,

the covers of T 1,W
i and T i

1,H
can be pre-computed (or cached) such that the

cumulative preprocessing time is O (WH), which is essentially free.

Since we have established that this preprocessing is effectively free we can
do it entirely a priori, i.e. obtain the transitive closure of the preprocessing
function. Let S be the matrix of string covers returned by the optimal Minimal
String Cover algorithm for each line and S′ for columns, i.e. Si

j = 1 if the

first j characters on the i-th line cover the i-th line and S′i
j = 1 if the first i

characters on the j-th column cover the j-th column. The current preprocessing
is equivalent to computing the Hadamard product of the matrices

S1
i
j = min

(

Si
j , S1

i−1
j

)

S′
1
i
j = min

(

S′i
j , S

′
1
i
j−1

)

S∗ = min (S1, S
′
1) = S1 ⊙ S′

1.

Notably, the number of elements that are not pruned is the number of non-
zero elements of S∗. However



S1
i
j =

i
∏

i′=1

Si′

j

S′
1
i
j =

j
∏

j′=1

S′i
j′

S∗i
j = S1

i
jS

′i
j =

i
∏

i′=1

j
∏

j′=1

Si′

j S
′i
j′

We now check the effectiveness of our preprocesing.

Proposition 3. Computing the matrix S∗ reduces the number of candidates that
need to be checked to Θ (1) average time for arbitrary H and Θ (1) worst-case
for H = 1.

Proof. Assume that there is a p probability for any tile in Si
j and S′i

j to be 1,

and even the additional condition that Smi
j ≥ Si

j for all m and assuming that
there is no single-character line nor column. Then by the Euler approximation,
the probability that S1

i
j be 1 is pi/ log(i), that S′i

j be 1 is pj/ log(j) and thus the

probability that S∗i
j be 1 is pi/ log(i)+j/ log(j). Thus the expected number of 1s,

considering that Si
W = SH

j = 1, is

(

1 +
H
∑

i=2

pi/ log(i)

)



1 +
W
∑

j=2

pj/ log(j)



 ≤

(

1 +
p

1− p

)2

=
1

(1− p)2
.

We conclude that there exists a solution that is linear on the average case,
O (WH) and quadratic in the worst, with the output-sensitive complexity:
O (whWH), but which reduces to O (W ) for the 1-dimensional case.

5 A Connection with Lattices

A lattice [25] is an additive subgroup L of Rn isomorphic to Z
n. By definition,

it is infinite and yet it is generated by n elements. Consider the isomorphism
φ : Zn → L. The projection of the unit volume {0, 1}n through this isomor-
phism φ ({0, 1}n) is called the primitive cell of the lattice and it can be tiled by
translations to form the entire L. Note that by isomorphism we have:

φ

(

n
∑

i=1

λiei

)

=

n
∑

i=1

λiφ (ei)

Moreover, if L is a lattice, R is a rotation and S is a scaling matrix i.e. Sj
i =

0 ⇔ i 6= j then SRL is isomorphic to L and thus when classifying lattices we
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Fig. 1: a grid lattice Fig. 2: a hexagonal row
lattice

Fig. 3: a mixed tiling
which is actually a grid
lattice

can assume that there exists some φ (ei) = e1. Moreover since Z
n is isomorphic

to itself by the maps ei → eσ(i) for any permutation σ ∈ Sn, we can assume that
φ (e1) = e1. Thus, all 2-dimensional latices can be characterized by the relative
phase and length of the second vector.

Given a volume in n-dimensional space and a lattice L ⊆ E
n, we can divide

it according to the lattice i.e. given φ : Zn → L we have

E
n
L = {Cl = conv ({φ (l+ v) |v ∈ {0, 1}n}) |l ∈ Z

n}

Note that the translation φ (l) → φ (l′) maps Cl to Cl′ and thus the volume
of any two cells is the same for a given L ⊆ E

n. Thus we can define the quantity
vol (L) = vol (C0) to be the unit volume of a lattice L.

Given some volumetric data E
n ⊇ V ∋ x → ψ (x) ∈ R we say that a lattice

L is legal with respect to ψ if ψ is also translation invariant i.e.

ψ (φ (x)) = ψ (φ (x+ v))∀x ∈ Z, v ∈ {0, 1}n, φ (x) ∈ V, x+ v ∈ V

Moreover, L is natural with respect to ψ if it is a legal lattice, minimal with
respect to the unit volume.

We would like to obtain the unit cell of the natural lattice given not the
lattice points but instead a tiling of the unit cell that is cropped to a W -long,
H-tall image that contains at least one copy of the unit cell i.e. volumetric 2-
dimensional data.

Once we have found an unit cell, any translation or rotation of it is still an
unit cell which describes the same geometry and thus we have no interest in
selecting any particular one. We accept any unit cell of any natural lattice.

Since a legal lattice is invariant to translations, we may always fix the origin
of one unit cell on T 1

1 . Since it is invariant to rotations we may always fix that
one of its unit vectors is along the T 1 row. However, it may be that the other
axis is not along the T1 column, as is the case for hexagonal lattices. Moreover, it
may be that our image does not end after an integer number of tiles, but instead
a fractional one. In this case, the end fraction has to appear in the cover. We
conclude that the shortest cover may never contain more than the volume of the
box-cover of 4 unit tiles. In fact, it never contains 2 entire unit tiles on any side.
Moreover, it will always contain at least one unit tile or a seed of it.



Note that this approach is especially interesting in the case of quasi-periodic
crystals (which do not admit a Bravais lattice) [25]. This extends the k-covers
problem [12] and asks for the k unit cells which have been used, for example in
a Penrose tiling [9].

6 Applications in Computer Graphics

Consider the task of producing huge, unique maps for games, such as mazes or
dungeons. Without procedural terrain generation this task is anything between
infeasible and impossible, depending on the desired size and the available time
and budget. Many games use Wang Tiles [10,16] to produce huge maps (an
interesting example is the Infamous game produced by Sucker Punch). They
have recently garnered around them a very large community.

Wang tiles are formal systems visually modeled by square tiles with colors on
each side. Two Wang tiles may only be tiled along an edge if the colors match.
The most popular problems concerning them were: whether a set of Wang tiles
can cover the plane and whether this can be done in a periodic way [13].

σN

σE

σS

σW

σN

σE

σS

σW

A Wang tile can also be represented as a 3-by-3 image. Two such images
may be tiled together either along an edge or a corner. The formal system iso-
morphism is trivial: two 3-by-3 images may be tiled together on an edge if the
respective colors on the Wang tiles match. This is very much like String Covers,
except two such images may never be tiled one alongside another.

Consider the following problems:

Problem 4 (Minimal Wang Cover). Given a tiling of some Wang Tiles check if
there exists a periodic pattern covering it.

Problem 5 (k-Wang Covers). Given a tiling of some Wang Tiles check if there
exist k patterns which, when tiled together cover the image.

Problem 6 (Approximate Wang Cover). Given a tiling of some Wang Tiles find
the minimal number of pixels to be changed for it to be covered by a single
periodic pattern.

When given a 3-tall image the first two collapse to vectorial String Cover
and vectorial k-Covers. For the last one, we must also impose that the black and
gray pixels which we added ourselves are never corrupted. Thus we impose that
the distance between two tilings is infinite if a black or gray pixel is corrupted.
Hence it is equivalent to the Approximate String Cover of Amir et al. with an
almost-Hamming metric.



Problem 7 (Generalization to pseudo-metrics). Given a compression palette Γ ⊆
Σ and an algorithm that is consistent with respect to the colors it replaces i.e.
A : Σ → Γ and a tiling of some Wang Tiles, check if the solutions to the above
problems change.

The last problem is not important from a computational perspective; in fact
it is quite trivial, but it gives substance to the pseudo-metric variations of String
Cover problems.

Given computationally efficient algorithms that solve Problem 7, there are
several interesting applications in computer aided design (see e.g. [10]). One use
of Wang tiles is procedure terrain generation in video games. If a player knows
that the game he is playing uses Wang tiles, he can use an image cover algorithm
to predict the next challenge. Another application is image compression: we can
use these algorithms on images produced by designers in order to extract textures
or motifs.

Consider a game with hexagonal tiles that wants to make use of Perlin
noise [20]. It is unnatural that it be used purely, since the rectangular lattice
is not actually legal. On the other hand, since we can obtain L, we by default
have a mapping φ−1 : L → Z

n. In this domain, our lattice is indeed rectangular.
Thus, it is here that we should apply our Perlin noise.

Definition 6. Given a lattice Z
n φ
→ L ⊆ E

n and a noise-function appropriate
for rectangular latices P : Zn → R, we can lift it to L:

L ∋ x → PL (x) = P
(

φ−1 (x)
)

∈ R

Thus we can define the Perlin noise appropriate for a given Wang system.
Note that the magnitude of Perlin noise is an input parameter. Thus, without
changing the game or inducing unnatural patterns, as a game developer we can
easily add a diversity grade for games using Wang tiles for terrain generation.
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