Skip to main content

Read-Once Certification of Linear Infeasibility in UTVPI Constraints

  • Conference paper
  • First Online:
  • 597 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11436))

Abstract

In this paper, we discuss the design and analysis of a polynomial time algorithm for a problem associated with a linearly infeasible system of Unit Two Variable Per Inequality (UTVPI) constraints, viz., the read-once refutation (ROR) problem. Recall that a UTVPI constraint is a linear relationship of the form: \(a_{i}\cdot x_{i}+a_{j} \cdot x_{j} \le b_{ij}\), where \(a_{i},a_{j} \in \{0,1,-1\}\). A conjunction of such constraints is called a UTVPI constraint system (UCS) and can be represented in matrix form as: \(\mathbf{A \cdot x \le c}\). These constraint find applications in a host of domains including but not limited to operations research and program verification. For the linear system \(\mathbf{A\cdot x \le b}\), a refutation is a collection of m variables \(\mathbf{y}=[y_{1},y_{2},\ldots , y_{m}]^{T} \in \mathbb {R}^{m}_{+}\), such that \(\mathbf{y\cdot A =0}\), \(\mathbf{y \cdot b } < 0\). Such a refutation is guaranteed to exist for any infeasible linear program, as per Farkas’ lemma. The refutation is said to be read-once, if each \(y_{i} \in \{0,1\}\). Read-once refutations are incomplete in that their existence is not guaranteed for infeasible linear programs, in general. Indeed they are not complete, even for UCSs. Hence, the question of whether an arbitrary UCS has an ROR is both interesting and non-trivial. In this paper, we reduce this problem to the problem of computing a minimum weight perfect matching (MWPM) in an undirected graph. This results in an algorithm that runs in time polynomial in the size of the input UCS.

K. Subramani—This research was supported in part by the Air Force Research Laboratory Information Directorate, through the Air Force Office of Scientific Research Summer Faculty Fellowship Program and the Information Institute®, contract numbers FA8750-16-3-6003 and FA9550-15-F-0001.

P. Wojciechowski—This research was made possible by NASA WV EPSCoR grant #NNX15AK74A.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alekhnovich, M., Buss, S., Moran, S., Pitassi, T.: Minimum propositional proof length is NP-hard to linearly approximate. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 176–184. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055766

    Chapter  Google Scholar 

  2. Beame, P., Pitassi, T.: Propositional proof complexity: past, present, future. Bull. EATCS 65, 66–89 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

    Google Scholar 

  5. Duan, R., Pettie, S., Su, H.-H.: Scaling algorithms for weighted matching in general graphs. ACM Trans. Algorithms 14(1), 8:1–8:35 (2018)

    Article  MathSciNet  Google Scholar 

  6. Edmonds, J.: An introduction to matching. In: Mimeographed Notes. Engineering Summer Conference, University of Michigan, Ann Arbor, MI (1967)

    Google Scholar 

  7. Farkas, G.: Über die Theorie der Einfachen Ungleichungen. Journal für die Reine und Angewandte Mathematik 124(124), 1–27 (1902)

    MathSciNet  MATH  Google Scholar 

  8. Gabow, H.N.: An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. J. ACM 23(2), 221–234 (1976)

    Article  MathSciNet  Google Scholar 

  9. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Johnson, D. (ed.) Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), San Francisco, CA, USA, pp. 434–443. SIAM, January 1990

    Google Scholar 

  10. Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks. IEEE Trans. Comput. 44(3), 471–479 (1995)

    Article  Google Scholar 

  11. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308 (1985)

    Article  MathSciNet  Google Scholar 

  12. Hochbaum, D.S., (Seffi) Naor, J.: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J. Comput. 23(6), 1179–1192 (1994)

    Article  MathSciNet  Google Scholar 

  13. Iwama, K.: Complexity of finding short resolution proofs. In: Prívara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 309–318. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0029974

    Chapter  MATH  Google Scholar 

  14. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los Alamitos, CA, USA, pp. 29–36. IEEE Computer Society Press, June 1995

    Google Scholar 

  15. Büning, H.K., Wojciechowski, P.J., Subramani, K.: Finding read-once resolution refutations in systems of 2CNF clauses. Theor. Comput. Sci. 729, 42–56 (2018)

    Article  MathSciNet  Google Scholar 

  16. Büning, H.K., Zhao, X.: The complexity of read-once resolution. Ann. Math. Artif. Intell. 36(4), 419–435 (2002)

    Article  MathSciNet  Google Scholar 

  17. Korte, B., Vygen, J.: Combinatorial Optimization. Algorithms and Combinatorics, vol. 21. Springer, New York (2010). https://doi.org/10.1007/978-3-642-24488-9

    Book  MATH  Google Scholar 

  18. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_9

    Chapter  Google Scholar 

  19. Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–100 (2006)

    Article  MathSciNet  Google Scholar 

  20. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1999)

    MATH  Google Scholar 

  21. Revesz, P.Z.: Tightened transitive closure of integer addition constraints. In: Symposium on Abstraction, Reformulation, and Approximation (SARA), pp. 136–142 (2009)

    Google Scholar 

  22. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1987)

    MATH  Google Scholar 

  23. SRI International. Yices: An SMT solver. http://yices.csl.sri.com/

  24. Subramani, K.: Optimal length resolution refutations of difference constraint systems. J. Autom. Reason. (JAR) 43(2), 121–137 (2009)

    Article  MathSciNet  Google Scholar 

  25. Subramani, K., Williamson, M., Gu, X.: Improved algorithms for optimal length resolution refutation in difference constraint systems. Formal Aspects Comput. 25(2), 319–341 (2013)

    Article  MathSciNet  Google Scholar 

  26. Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)

    Article  MathSciNet  Google Scholar 

  27. Urquhart, A.: The complexity of propositional proofs. Bull. Symb. Logic 1(4), 425–467 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Subramani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subramani, K., Wojciechowski, P. (2019). Read-Once Certification of Linear Infeasibility in UTVPI Constraints. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14812-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14811-9

  • Online ISBN: 978-3-030-14812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics