Skip to main content

Minmax-Regret Evacuation Planning for Cycle Networks

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11436))

Abstract

This paper considers the problem of evacuating people located at vertices to a “sink” in a cycle network. In the “minmax-regret” version of this problem, the exact number of evacuees at each vertex is unknown, but only an interval for a possible number is given. We show that a minmax-regret 1-sink in cycle networks with uniform edge capacities can be found in \(O(n^2)\) time, where n is the number of vertices. No correct algorithm was known before for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We thank Prof. M. Golin of Hong Kong University of Science and Technology for pointing out that their claim is incorrect.

  2. 2.

    Formally, they are the non-dominated scenarios defined in Sect. 2.4.

  3. 3.

    From now on clockwise and counterclockwise are abbreviated as cw and ccw, respectively.

  4. 4.

    In the parlance of network flow theory, flow obeying the latter condition is called confluent.

  5. 5.

    We have \(\varTheta _{cw}(x,\hat{e})=0\) (resp. \(\varTheta ^s_{ccw}(x,\hat{e})=0\)), if x and \(\hat{e}\) are on the same edge, since \(V[v_{cw}(\hat{e}),x)=\emptyset \) (resp. \(V(x,v_{ccw}(\hat{e})]=\emptyset \)).

  6. 6.

    The tiny circle at an end of each linear segment means that that point is missing.

References

  1. Arumugam, G.P., Augustine, J., Golin, M., Srikanthan, P.: A polynomial time algorithm for minimax-regret evacuation on a dynamic path. arXiv:1404.5448 v1 [cs.DS] 22 April 2014

  2. Benkoczi, R., Das, R.: The min-max sink location problem on dynamic cycle networks, October 2018. Submitted to a conference

    Google Scholar 

  3. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved algorithms for computing k-sink on dynamic flow path networks. Algorithms and Data Structures. LNCS, vol. 10389, pp. 133–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_12

    Chapter  MATH  Google Scholar 

  4. Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on path and tree networks. Theor. Comput. Sci. 607, 411–425 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In: Hong, S.-H. (ed.) Leibniz International Proceedings in Informatics, 27th International Symposium on Algorithms and Computation (ISAAC), pp. 25:1–25:13 (2016)

    Google Scholar 

  6. Chen, D., Golin, M.: Minmax centered \(k\)-partitioning of trees and applications to sink evacuation with dynamic confluent flows. CoRR abs/1803.09289 (2018)

    Google Scholar 

  7. Cheng, S.-W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problems in dynamic path networks. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 121–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38236-9_12

    Chapter  Google Scholar 

  8. Frederickson, G., Johnson, D.: Finding \(k\)th paths and \(p\)-centers by generating and searching good data structures. J. Algorithms 4, 61–80 (1983)

    Article  MathSciNet  Google Scholar 

  9. Golin, M., Sandeep, S.: Minmax-regret \(k\)-sink location on a dynamic tree network with uniform capacities. arXiv:1806.03814v1 [cs.DS], pp. 1–32, 11 June 2018

  10. Higashikawa, Y., et al.: Minimax regret 1-sink location problem in dynamic path networks. Theor. Comput. Sci. 588(11), 24–36 (2015)

    Article  MathSciNet  Google Scholar 

  11. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4), 539–555 (2014)

    Article  MathSciNet  Google Scholar 

  12. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theor. Comput. Sci. 607(1), 2–15 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, London (1997)

    Book  Google Scholar 

  14. Li, H., Xu, Y.: Minimax regret 1-sink location problem with accessibility in dynamic general networks. Eur. J. Oper. Res. 250, 360–366 (2016)

    Article  MathSciNet  Google Scholar 

  15. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n\log ^2 n)\) algorithm for a sink location problem in dynamic tree networks. In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 251–264. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3_21

    Chapter  Google Scholar 

  16. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n\log ^2 n)\) algorithm for a sink location problem in dynamic tree networks. Discret. Appl. Math. 154, 2387–2401 (2006)

    Article  MathSciNet  Google Scholar 

  17. Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4, 414–424 (1979)

    Article  MathSciNet  Google Scholar 

  18. Wang, H.: Minmax regret 1-facility location on uncertain path networks. Eur. J. Oper. Res. 239(3), 636–643 (2014)

    Article  MathSciNet  Google Scholar 

  19. Xu, Y., Li, H.: Minimax regret 1-sink location problem in dynamic cycle networks. Inf. Process. Lett. 115(2), 163–169 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported in part by NSERC of Canada Discovery Grant, awarded to Robert Benkoczi and Binay Bhattacharya, in part by JST Crest (JPMJCR1402), granted to Naoki Kato and Yuya Higashikawa, and in part by JSPS Kakenhi Grant-in-Aid for Young Scientists (B) (17K12641), granted to Yuya Higashikawa.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N. (2019). Minmax-Regret Evacuation Planning for Cycle Networks. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14812-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14811-9

  • Online ISBN: 978-3-030-14812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics