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Abstract

Identification of up to d defective items and up to h inhibitors in a set of n items is the main task of non-
adaptive group testing with inhibitors. To efficiently reduce the cost of this Herculean task, a subset of the n items
is formed and then tested. This is called group testing. A test outcome on a subset of items is positive if the subset
contains at least one defective item and no inhibitors, and negative otherwise. We present two decoding schemes
for efficiently identifying the defective items and the inhibitors in the presence of e erroneous outcomes in time
poly(d, h, e, log2 n), which is sublinear to the number of items n. This decoding complexity significantly improves
the state-of-the-art schemes in which the decoding time is linear to the number of items n, i.e., poly(d, h, e, n).
Moreover, each column of the measurement matrices associated with the proposed schemes can be nonrandomly
generated in polynomial order of the number of rows. As a result, one can save space for storing them. Simulation
results confirm our theoretical analysis. When the number of items is sufficiently large, the decoding time in our
proposed scheme is smallest in comparison with existing work. In addition, when some erroneous outcomes are
allowed, the number of tests in the proposed scheme is often smaller than the number of tests in existing work.

I. INTRODUCTION

Group testing was proposed by an economist, Robert Dorfman, who tried to solve the problem of
identifying which draftees had syphilis [1] in WWII. Nowaday, it is known as a problem of finding up
to d defective items in a colossal number of items n by testing t subsets of n items. It can also be
translated into the classification of up to d defective items and at least n − d negative items in a set
of n items. The meanings of “items,” “defective items,” and “tests” depend on the context. Normally,
a test on a subset of items (a test for short) is positive if the subset has at least one defective item,
and negative otherwise. For testing design, there are two main approaches: adaptive and non-adaptive
designs. In adaptive group testing, the design of a test depends on the earlier tests. With this approach,
the number of tests can be theoretically optimized [2]. However, it would take a long time to proceed such
sequential tests. Therefore, non-adaptive group testing (NAGT) [3], [2] is preferable to be used: all tests
are designed in prior and tested in parallel. The proliferation of applying NAGT in various fields such
as DNA library screening [4], DNA hybridization [5], multiple-access channels [6], data streaming [7],
compressed sensing [8], similarity searching [9], neuroscience [10] has made it become more attractive
recently. We thus focus on NAGT in this work.

The development of NAGT applications in the field of molecular biology led to the introduction of
another type of item: inhibitor. An item is considered to be an inhibitor if it interferes with the identification
of defective items in a test, i.e., a test containing at least one inhibitor item returns negative outcome. In
this “Group Testing with Inhibitors (GTI)” model, the outcome of a test on a subset of items is positive
iff the subset has at least one defective item and no inhibitors in the tested set. Due to great potential for
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use in applications, the GTI model has been intensively studied for the last two decades [11], [12], [13],
[14].

In NAGT using the GTI model (NAGTI), if t tests are needed to identify up to d defective items and
up to h inhibitors among n items, it can be seen that they comprise a t × n measurement matrix. The
procedure for obtaining the matrix is called the construction procedure. The procedure for obtaning the
outcome of t tests using the matrix is called encoding procedure, and the procedure for obtaining the
defective items and the inhibitor items from t outcomes is called the decoding procedure. Since noise
typically occurs in biology experiments, we assume that there are up to e erroneous outcomes in the test
outcomes. The objective of NAGTI is to design a scheme such that all items are “efficiently” identified
from the encoding procedure and from the decoding procedure in the presence of noise.

There are two approaches when using NAGTI. One is to identify defective items only. Chang et al. [15]
proposed a scheme using O((d + h + e)2 log2 n) tests to identify all defective items in time O((d + h +
e)2n log2 n). Using a probabilistic scheme, Ganesan et al. [16] reduced the number of tests to O((d +
h) log2 n) and the decoding time to O((d+h)n log2 n). However, this scheme proposed is applicable only
in a noise-free setting, which is restricted in practice. The second approach is to identify both defective
items and inhibitors. Chang et al. [15] proposed a scheme using O(e(d + h)3 log2 n) tests to classify n
items in time O(e(d+h)3n log2 n). Without considering the presence of noise in the test outcome, Ganesan
et al. [16] used O((d+h2) log2 n) tests to identify at most d defective items and at most h inhibitor items
in time O((d+ h2)n log2 n).

A. Problem definition
We address two problems. The first is how to efficiently identify defective items in the test outcomes in

the presence of noise. The second is how to efficiently identify both defective items and inhibitor items in
the test outcome in the presence of noise. Let z be an odd integer and e = z−1

2
be the maximum number

of errors in the test outcomes.

Problem 1. There are n items including up to d defective items and up to h inhibitor items. Is there a
measurement matrix such that
• All defective items can be identified in time poly(d, h, e, log2 n) in the presence of up to e erroneous

outcomes, where the number of rows in the measurement matrix is much smaller than n?
• Each column of the matrix can be nonrandomly generated in polynomial time of the number of rows?

Problem 2. There are n items including up to d defective items and up to h inhibitor items. Is there a
measurement matrix such that
• All defective items and inhibitors items can be identified in time poly(d, h, e, log2 n) in the presence

of up to e erroneous outcomes, where the number of rows in the measurement matrix is much smaller
than n?

• Each column of the matrix can be nonrandomly generated in polynomial time of the number of rows?

We note that some previous works such as [17], [18] do not consider inhibitor items. In this case,
Problem 1 and 2 can be reduced to the same problem by eliminating all terms related to “inhibitor items.”

B. Problem model
We model NAGTI as follows. Suppose that there are up to 1 ≤ d defectives and up to 0 ≤ h inhibitors

in n items. Let x = (x1, . . . , xn)T ∈ {0, 1,−∞}n be the vector representation of n items. Note that the
number of defective items must be at least one. Otherwise, the outcomes of the tests designed would yield
negative. Item j is defective iff xj = 1, is an inhibitor iff xj = −∞, and is negative iff xj = 0. Suppose
that there are at most d 1’s in x, i.e., |D = {j | xj = 1, for j = 1, . . . , n}| ≤ d, and at most h −∞’s in
x, i.e., |H = {j | xj = −∞, for j = 1, . . . , n}| ≤ h.
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Let Q = (qij) be a q×n binary measurement matrix which is used to identify defectives and inhibitors
in n items. Item j is represented by column j of Q (Qj) for j = 1, . . . , n. Test i is represented by the
row i in which qij = 1 iff the item j belongs to the test i, and qij = 0 otherwise, where i = 1, . . . , q.
Then the outcome vector using the measurement matrix Q is

r = Q⊗ x =

r1...
rq

 , (1)

where ⊗ is called the NAGTI operator, test outcome ri = 1 iff
∑n

j=1 qijxj ≥ 1, and ri = 0 otherwise for
i = 1, . . . , q. Note that we assume 0× (−∞) = 0 and there may be at most e erroneous outcomes in r.

Given l binary vectors yw = (y1w, y2w, . . . , yBw)T for w = 1, . . . , l and some integer B ≥ 1. The union
of y1, . . . ,yl is defined as vector y = ∨li=1yi = (∨li=1y1i, . . . ,∨li=1yBi)

T , where ∨ is the OR operator.
Then when vector x is binary, i.e., there is no inhibitor in n items, (1) can be represented as

r = Q⊗ x =
n∨
j=1

xjQj =
n∨

j∈D

Qj. (2)

Our objective is to design the matrix Q such that vector x can be recovered when having r in time
poly(q) = poly(d, h, e, log n).

C. Our contributions
Overview: Our objective is to reduce the decoding complexity for identifying up to d defectives and/or

up to h inhibitors in the presence of up to e erroneous test outcomes. We present two deterministic
schemes that can efficiently solve both Problems 1 and 2 with the probability 1. These schemes use
two basic ideas: each column of a t1 × n (d + h, r; z]-disjunct matrix (defined later) must be generated
in time poly(t1) and the tensor product (defined later) between it and a special signature matrix. These
ideas reduce decoding complexity to poly(t1). Moreover, the measurement matrices used in our proposed
schemes are nonrandom, i.e., their columns can be nonrandomly generated in time polynomial of the
number of rows. As a result, one can save space for storing the measurement matrices. Simulation results
confirm our theoretical analysis. When the number of items is sufficiently large, the decoding time in
our proposed scheme is smallest in comparison with existing work. In addition, when some erroneous
outcomes are allowed, the number of tests in the proposed scheme is often smaller than the number of
tests in existing work.

Comparison: We compare our proposed schemes with existing schemes in Table I. There are six criteria
to be considered here. The first one is construction type, which defines how to achieve a measurement
matrix. It also affects how defectives and inhibitors are identified. The most common construction type is
random; i.e., a measurement matrix is generated randomly. The six schemes evaluated here use random
construction except for our proposed schemes.

The second criterion is decoding type: “Deterministic” means the decoding objectives are always
achieved with probability 1, while “Randomized” means the decoding objectives are achieved with
some high probability. Ganesan et al. [16] used randomized decoding schemes to identify defectives
and inhibitors. The schemes in [15] and our proposed schemes use deterministic decoding.

The remaining criteria are: identification of defective items only, identification of both defective items
and inhibitor items, error tolerance, the number of tests, and the decoding complexity. The only advantage
of the schemes proposed by Ganesan et al. [16] is that the number of tests is less than ours. Our schemes
outperformed the existing schemes in other criteria such as error-tolerance, the decoding type, and the
decoding complexity. The number of tests with our proposed schemes for identifying defective items only

3



TABLE I: Comparison with existing schemes. “Deterministic” and “Randomized” are abbreviated as “Det.”
and “Rnd.”. Notation log stands for log2. The

√
sign means that the criterion holds for that scheme, while

the × sign means that it does not. We set e = z−1
2

and λ = (d+h) lnn
W((d+h) lnn)

+ z. Note that W(x)eW(x) = x

and W(x) = Θ (lnx− ln lnx) .

Scheme Construction
type

Decoding
type

Max. no.
of # errors

Defectives
only

Defectives
and

inhibitors

Number of tests
(t)

Decoding
complexity

〈1〉 Chang
et al. [15] Random Det. e

√
× O((d+ h+ e)2 logn) O(tn)

〈2〉 Ganesan
et al. [16] Random Rnd. 0

√
× O((d+ h) logn) O(tn)

〈3〉 Proposed
(Theorem 4) Nonrandom Det. e

√
× Θ

(
λ2 logn

)
O
(
λ5 logn
(d+h)2

)
〈4〉 Chang

et al. [15] Random Det. e
√ √

O(e(d+ h)3 logn) O(tn)

〈5〉 Ganesan
et al. [16] Random Rnd. 0

√ √
O((d+ h2) logn) O(tn)

〈6〉 Proposed
(Theorem 5) Nonrandom Det. e

√ √
Θ
(
λ3 logn

)
O
(
dλ6 ×max

{
λ

(d+h)2
, 1
})

or both defective items and inhibitor items is slightly larger than that with two schemes proposed by
Chang et al. [15]. However, the decoding complexity in our proposed scheme is much less than theirs.

II. PRELIMINARIES

Notation is defined here for consistency. We use capital calligraphic letters for matrices, non-capital
letters for scalars, bold letters for vectors, and capital letters for sets. Capital letters with asterisk is
denoted for multisets in which elements may appear multiple times. For example, S = {1, 2, 3} is a set
and S∗ = {1, 1, 2, 3} is a multiset.

Here we assume 0× (−∞) = 0. We also list some frequent notations as follows:
•n; d: number of items; maximum number of defective items. For simplicity, we suppose that n is the
power of 2.
• | · |: the weight, i.e., the number of non-zero entries in the input vector or the cardinality of the input
set.
•⊗,}: operator for NAGTI and tensor product, respectively (to be defined later).
• [n]: {1, 2, . . . , n}.
•S: s×n measurement matrix used to identify at most one defective item or one inhibitor item, where
s = 2 log2 n.
•M = (mij): m× n disjunct matrix, where integer m ≥ 1 is number of tests.
•T = (tij): t× n measurement matrix used to identify at most d defective items, where integer t ≥ 1
is number of tests.
•x;y: representation of n items; binary representation of the test outcomes.
•Sj,Mj,Mi,∗: column j of matrix S, column j of matrix M, and row i of matrix M.
•D;H: index set of defective items; index set of inhibitor items. For example, D = {2, 6} means
items 2 and 6 are defectives, and H = {10, 11} means items 10 and 11 are inhibitors.
• supp(c): support set of vector c = (c1, . . . , ck); i.e., supp(c) = {j | cj 6= 0}. For example, the support
vector for v = (1, 0,−∞, 0, 0, 1) is supp(v) = {1, 3, 6}.
•diag(Mi,∗) = diag(mi1,mi2, . . . ,min): diagonal matrix constructed from input vector Mi,∗ =
(mi1,mi2, . . . ,min).
• e, log, ln: base of natural logarithm, logarithm of base 2, and natural logarithm.
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• dxe; bxc: ceiling function of x; floor function of x.
•W(x): the Lambert W function in which W(x)eW(x) = x and W(x) = Θ (lnx− ln lnx).

A. Tensor product
Let } be the tensor product notation. Note that the tensor product defined here is not the usual tensor

product used in linear algebra. Given an a×n matrix A = (aij) and an s×n matrix S = (sij), the r×n
tensor product R = (rij) is defined as

R = A} S :=

S × diag(A1,∗)
...

S × diag(Af,∗)

 =

a11S1 . . . a1nSn
... . . . ...

aa1S1 . . . aanSn

 , (3)

where diag(.) is the diagonal matrix constructed from the input vector, and Ah,∗ = (ah1, . . . , ahn) is the
hth row of A for h = 1, . . . , a. The size of R is r × n, where r = a × s. For example, suppose that
a = 3, s = 2, and n = 4. Matrices A and S are defined as follows:

A =

1 0 1 0
0 1 1 1
0 0 1 0

 , S =

[
0 1 0 0
1 0 1 1

]
. (4)

Then the tensor product of A and S is

R = A} S =

[
1 0 1 0
0 1 1 1

]
}

[
0 1 0 0
1 0 1 1

]
=


1×

[
0
1

]
0×

[
1
0

]
1×

[
0
1

]
0×

[
0
1

]

0×
[
0
1

]
1×

[
1
0

]
1×

[
0
1

]
1×

[
0
1

]
 =


0 0 0 0
1 0 1 0
0 1 0 0
0 0 1 1

 .
B. Reed-Solomon codes

Let n1, r1,Λ, q be positive integers. Let Σ be a finite field, which is called the alphabet of the code, and
|Σ| = q. From now, we set Σ = Fq. Each codeword is considered as a vector of Fn1×1

q . An (n1, r1,Λ)q
code C is a subset of Σn1 such that: (i) Λ = min

x,y∈C
∆(x,y), where ∆(x,y) is the number of positions in

which the corresponding entries of x and y differ; and (ii) the cardinality of C, i.e., |C|, is at least qr1 .
The parameters (n1, r1,Λ, q) represent the block length, dimension, minimum distance, and alphabet

size of C. Assume that for any y ∈ C, there exists a message x ∈ Fr1q such that y = Gx, where
matrix G is a full-rank n1 × r1 matrix in Fq. Then C is called a linear code with minimum distance
Λ = miny∈C |supp(y)| and denoted as [n1, r1,Λ]q. Let MC denote the n1 × qr1 matrix whose columns
are the codewords in C.

An [n1, r1,Λ]q-Reed-Solomon (RS) code [19] is an [n1, r1,Λ]q code with Λ = n1 − r1 + 1. Since the
parameter Λ can be obtained from n1 and r1, we usually refer to a [n1, r1,Λ]q-RS code as [n1, r1]q-RS
code.

C. Disjunct matrix
Superimposed code was introduced by Kautz and Singleton [20] and then generalized by D’yachkov

et al. [21] and Stinson and Wei [22]. A superimposed code is defined as follows.

Definition 1. An m× n binary matrix M is called an (d, r; z]-superimposed code if for any two disjoint
subsets S1, S2 ⊂ [n] such that |S1| = d and |S2| = r, there exists at least z rows in which there are all
1’s among the columns in S2 while all the columns in S1 have 0’s, i.e.,∣∣∣∣∣ ⋂

j∈S2

supp (Mj)
∖ ⋃
j∈S1

supp (Mj)

∣∣∣∣∣ ≥ z.
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Matrix M is usually referred to as an (d, r; z]-disjunct matrix. The illustration of M is as follows.

M =


. . .
. . .
. . .
. . .
. . .
. . .

r︷ ︸︸ ︷
. . . . . .
1 1
. . . . . .
1 1
. . . . . .
. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

d︷ ︸︸ ︷
. . . . . . . . .
0 0 0
. . . . . . . . .
0 0 0
. . . . . . . . .
. . . . . . . . .

. . .

. . .

. . .

. . .

. . .

. . .


#1

#z

The parameter e = b(z − 1)/2c is usually referred to as the error tolerance of a disjunct matrix. It
is clear that for any d′ ≤ d, r′ ≤ r, and z′ ≤ z, an (d, r; z]-disjunct matrix is also an (d′, r′; z′]-disjunct
matrix.

Let M = (mij) be an m × n binary (d, r; z]-disjunct matrix and x = (x1, . . . , xn)T ∈ {0, 1}n be the
binary representation vector of n items, where |x| ≤ d. From (2), the outcome vector of m tests by using
M and x is defined as follows:

y =M⊗ x =
n∨
j=1

xjMj =
n∨

j∈D

Mj, (5)

where D = supp(x) = {j | xj 6= 0} = {j | xj = 1}. The procedure to get y is called encoding procedure.
It includes the construction procedure, which is to get a measurement matrixM. The procedure to recover
x from y and M is called decoding procedure.

Our objective is to recover x when the outcome vector y and the matrix M are given. The naive
decoding when given an outcome vector is to scan all columns. If a column does not belong to the
outcome vector, the item corresponding to that column is negative. Once the negative items are identified,
the remaining items can be taken as defectives. With this naive decoding, up to r − 1 false positives are
identified in time O(tn). Moreover, at most |x|+ r − 1 (and at least |x|) defective items are identified.

The number of rows in an m × n (d, r; z]-disjunct matrix is usually exponential to d [18], [23].
Cheraghchi [24] proposed a nonrandom construction for (d, r; z]-disjunct matrices in which the number
of tests is larger than the existing works as d or r increases.

Theorem 1 (Lemma 29 [24]). For any positive integers d, r, z and n with d + r ≤ n, there exists an
m × n nonrandom (d, r; z]-disjunct matrix where m = O ((rd lnn+ z)r+1). Moreover, each column of
the matrix can be generated in time poly(m).

An (d, r; z]-disjunct matrix is called an (d; z]-disjunct matrix when r = 1, and a d-disjunct matrix when
r = z = 1. For efficient decoding in the NAGTI model, we pay attention only to an m×n binary (d, r; z]-
disjunct matrix in which each column can be generated in time poly(m). Cheraghchi [25] presented a
matrix that can handle at most e0 false positives and e1 false negatives in the outcome vector. However,
the reconstructed vector would differ O(d) positions from the original vector x; i.e., there is no guarantee
that the measurement matrix is d-disjunct. Therefore, it is unsuitable for efficient decoding in NAGTI.
The t× n d-disjunct matrix proposed in [26] can be used to achieve an (d; z]-disjunct matrix by stacking
it z times. Each column of the resulting matrix can be generated in time poly(t). However, the number
of tests is 4800zd2 log n, which is pretty large. Moreover, the construction in [26] is random, which is
restrictive in practice, especially in biology screening.

D. Bui et al.’s scheme
In this section, the scheme proposed by Bui et al. [17] is described. Its main contribution is that, given

any m× n (d− 1)-disjunct matrix, a bigger t× n measurement matrix can be generated such that up to
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d defective items (in a set of n items having only defective and negative items) can be identified in time
O(t) = O(m log n), where t = 2m log n.

Encoding procedure: Let S be an s× n measurement matrix:

S :=

[
b1 b2 . . . bn
b1 b2 . . . bn

]
=
[
S1 . . . Sn

]
, (6)

where s = 2 log n, bj is the log n-bit binary representation of integer j − 1, bj is the complement of bj ,

and Sj :=

[
bj
bj

]
for j = 1, 2, . . . , n. Item j is characterized by column Sj and that the weight of every

column in S is s/2 = log n. Furthermore, the index j is uniquely identified by bj .
For example, if we set n = 8, s = 2 log n = 6, and the matrix in (6) becomes:

S =


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

 . (7)

Given an m×n (d−1)-disjunct matrixM, the new measurement t×n matrix is constructed as follows:

T =M} S, (8)

where } is the tensor product defined in section II-A and t = ms. For any binary input vector x, its
outcome using measurement matrix T is

y = T ⊗ x =


y1

...

ym

 =



y1
...
ys
...

y(m−1)s+1
...
yt


, (9)

where yi = (S × diag(Mi,∗))⊗ x =
∨n
j=1 xjmijSj for i = 1, . . . ,m.

Decoding procedure: The decoding procedure is quite simple. We can scan all yi for i = 1, . . . ,m.
If wt(yi) = log n, the defective item can be identified by calculating the first half of yi. Otherwise, no
defective item is identified. The procedure is described in Algorithm 1.

This scheme can be summarized as the following theorem:

Theorem 2. Let an m × n matrix M be (d − 1)-disjunct. Suppose that a set of n items has up to d
defective and no inhibitors. Then there exists a t× n matrix T constructed from M that can be used to
identify up to d defective items in time t = m× 2 log n. Further, suppose that each column of M can be
computed in time β. Then every column of T can be computed in time 2 log n× β = O(β log n).

Algorithm 1 is modified and denoted as GetDefectives∗(y, n) if we substitute S by multiset S∗; i.e.,
the output of GetDefectives∗(·) may have duplicated items which are used to handle the presence of
erroneous outcomes in Sections IV and V. Line 8 is interpreted as “Add d0 to set S∗”.

7



Algorithm 1 GetDefectives(y, n): detection of up to d defective items.
Input: number of items n; outcome vector y
Output: defective items

1: s = 2 log n.
2: S = ∅.
3: Let t be number of entries in y.
4: Divide y into m = t/s smaller vectors y1, . . . ,ym such that y = (y1, . . . ,ym)T and their size are

equal to s.
5: for i = 1 to m do
6: if wt(yi) = log n then
7: Get defective item d0 by checking first half of y.
8: S = S ∪ {d0}.
9: end if

10: end for
11: return S.

III. IMPROVED INSTANTIATION OF NONRANDOM (d, r; z]-DISJUNCT MATRICES

We first state the useful nonrandom construction of (d, r; z]-disjunct matrices, which is an instance of
Theorem 1:

Theorem 3 (Lemma 29 [24]). Let 1 ≤ d, r, z < n be integers and C be a [n1 = q − 1, k1]q-RS code. For
any d < n1−z

r(k1−1) = q−1−z
r(k1−1) and n ≤ qk1 , there exists a t × n nonrandom (d, r; z]-disjunct matrix where

t = O (qr+1). Moreover, each column of the matrix can be constructed in time O
(
qr+2

r2d2

)
.

Let W(x) be a Lambert W function in which W(x)eW(x) = x for any x ≥ −1
e
. An approximation of

W(x) [27] is lnx − ln lnx ≤ W(x) ≤ lnx − 1
2

ln lnx for any x ≥ e. Then an improved instatiation of
nonrandom (d, r; z]-disjunct matrix is stated as follows:

Corollary 1. Let 1 ≤ r, d + z ≤ n be integers. Then there exists a t × n nonrandom (d, r; z]-disjunct

matrix where t = Θ

((
rd lnn

W(d lnn)
+ z
)r+1

)
. Moreover, each column of the matrix can be constructed in

time O
(

1
r2d2

(
rd lnn

W(d lnn)
+ z
)r+2

)
.

Proof. From Theorem 3, we only need to find a [n1 = q−1, k1]q-RS code such that d < n1−z
r(k1−1) = q−1−z

r(k1−1)
and qk1 ≥ n. One chooses

q =


rd lnn

W(d lnn)
+ z + 1 if rd lnn

W(d lnn)
+ z + 1 is

the power of 2.
2η+1, otherwise.

(10)

where η is an integer satisfying 2η < rd lnn
W(d lnn)

+ z + 1 < 2η+1. We have q = Θ
(

rd lnn
W(d lnn)

+ z
)

in both
cases because

rd lnn

W(d lnn)
+ z + 1 ≤ q < 2

(
rd lnn

W(d lnn)
+ z + 1

)
.
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Set k1 =
⌈
q−z−1
rd

⌉
≥ lnn

W(d lnn)
. Note that the condition on d in Theorem 3 always holds because:

k1 =

⌈
q − z − 1

rd

⌉
=⇒ k1 <

q − z − 1

rd
+ 1 =⇒ d <

q − 1− z
r(k1 − 1)

=
n1 − z
r(k1 − 1)

.

Finally, our task is to prove that n ≤ qk1 . Indeed, we have:

qk1 ≥
(

rd lnn

W(d lnn)
+ z + 1

) lnn
W(d lnn)

≥
(

d lnn

W(d lnn)

) lnn
W(d lnn)

=
(

eW(d lnn)eW(d lnn
)1/d
≥ (ed lnn)1/d = n.

This completes our proof.

The number of tests in our construction is better than the one in Theorem 1. Furthermore, there is no
decoding scheme associated with matrices in this corollary except the naive one if the given input is a
binary vector. However, when r = z = 1, the scheme in [17] achieves the same number of tests and has
an efficient decoding algorithm.

IV. IDENTIFICATION OF DEFECTIVE ITEMS

In this section, we answer Problem 1 that there exists a t × n measurement matrix such that: it can
handle at most e errors in the test outcome; each column can be nonrandomly generated in time poly(t);
and all defective items can be identified in time poly(d, h, e, log n), where there are up to d defective
items and up to h inhibitor items in n items. The main idea is to use Algorithm 1 to identify all potential
defective items. Then a sanitary procedure is proceeded to remove all false defective items.

Theorem 4. Let 1 ≤ z, d + h ≤ n be integers, z be odd, and λ = (d+h) lnn
W((d+h) lnn)

+ z. A set of n items
includes up to d defective items and up to h inhibitors. Then there exists a nonrandom matrix t× n such
that up to d defective items can be identified in time O

(
λ5 logn
(d+h)2

)
with up to e = z−1

2
errors in the test

outcomes, where t = Θ (λ2 log n). Moreover, each column of the matrix can be generated in time poly(t).

The proof is given in the following sections.

A. Encoding procedure

We set e = z−1
2

and λ = (d+h) lnn
W((d+h) lnn)

+ z. Let an m× n matrix M be an (d + h; z]-disjunct matrix in
Corollary 1 (r = 1), where

m = Θ

((
(d+ h) lnn

W((d+ h) lnn)
+ z

)2
)

= O(λ2).

Each column in M can be generated in time t1 where

t1 = O

(
λ3

(d+ h)2

)
.

Then the final t× n measurement matrix T is

T =M} S, (11)

where the s × n matrix S is defined in (6) and t = ms = Θ (λ2 log n). Then it is easy to see that each
column of matrix T can be generated in time t1 × s = poly(t).
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Any input vector x = (x1, . . . , xn)T ∈ {0, 1,−∞}n contains at most d 1’s and at most h −∞’s as
described in section I-B. Note that D and H are the index sets of the defective items and the inhibitor
items, respectively. Then the binary outcome vector using the measurement matrix T is

y = T ⊗ x =


y1

...

ym

 =



y1
...
ys
...

y(m−1)s+1
...
yt


, (12)

where

yi = (S × diag(Mi,∗))⊗ x =

y(i−1)s+1

. . .
yis

 , (13)

and y(i−1)s+l = 1 iff
∑n

j=1mijsljxj ≥ 1, and y(i−1)s+l = 0 otherwise, for i = 1, . . . ,m, and l = 1, . . . , s.
We assume that there are at most e incorrect outcomes in the outcome vector y.

B. Decoding procedure
Given outcome vector y = (y1, . . . ,ym)T , we can identify all defective items by using Algorithm 2.

Step 1 is to identify all potential defectives and put them in the set S∗. Then Steps 3 to 8 are to remove
duplicate items in the new potential defective set S0. After that, Steps 9 to 17 are to remove all false
defectives. Finally, Step 18 returns the defective set.

C. Correctness of decoding procedure
Since matrix M is an (d + h; z]-disjunct matrix, there are at least z rows i0 such that mi0j = 1 and

mi0j′ = 0 for any j ∈ D and j′ 6∈ D ∪ H \ {j}. Since up to e = (z − 1)/2 errors may appear in test
outcome y, there are at least e + 1 vectors yi0 such that the condition in Step 6 of Algorithm 1 holds.
Consequently, each value j ∈ D appears at least e + 1 times. Therefore, Steps 1 to 8 return a set S0

containing all defective items and some false defectives.
Steps 9 to 17 are to remove false defectives. For any index j 6∈ D, since there are at most e = (z−1)/2

erroneous outcomes, there is at least 1 row i0 such that ti0j = 1 and ti0j′ = 0 for all j′ ∈ D∪H. Because
item j 6∈ D, the outcome of that row (test) is negative (0). Therefore, Step 13 is to check whether an item
in S0 is non-defective. Finally, Step 18 returns the set of defective items.

D. Decoding complexity
The time to run Step 1 is O(t). Since |S∗| ≤ m, it takes m time to run Steps 3 to 8. Because |S∗| ≤ m,

the cardinality of S0 is up to m. The loop at Step 9 runs at most m times. Steps 11 and 13 take time
s× m1.5

(d+h)2
and t, respectively. The total decoding time is:

O(t) +m+m×
(
s× m1.5

(d+ h)2
+ t

)
= O

(
sm2.5

(d+ h)2

)
= O

(
λ5 log n

(d+ h)2

)
= O

(
log n

(d+ h)2

(
(d+ h) lnn

W((d+ h) lnn)
+ z

)5
)
.

10



Algorithm 2 GetDefectivesWOInhibitors(y, n, e): detection of up to d defective items without identifying
inhibitors.
Input: a function to generate t×n measurement matrix T ; outcome vector y; maximum number of errors
e
Output: defective items

1: S∗ = GetDefectives∗(y, n). . Identify all potential defectives.
2: S0 = ∅. . Defective set.
3: foreach x ∈ S∗ do
4: if x appears in S∗ at least e+ 1 times then
5: S0 = S0 ∪ {x}.
6: Remove all elements that equal x in S∗.
7: end if
8: end foreach
9: for all x ∈ S0 do . Remove false defectives.

10: . Get column corresponding to defective item x.
11: Generate column Tx =Mx } Sx.
12: . Condition for a false defective.
13: if ∃i0 ∈ [t] : ti0x = 1 and yi0 = 0 then
14: S0 = S0 \ {x}. . Remove false defectives.
15: break;
16: end if
17: end for
18: return S0. . Return set of defective item.

V. IDENTIFICATION OF DEFECTIVES AND INHIBITORS

In this section, we answer Problem 2 that there exists a v × n measurement matrix such that: it can
handle at most e errors in the test outcome; each column can be nonrandomly generated in time poly(v);
and all defective items and inhibitor items can be identified in time poly(d, h, e, log n), where there are
up to d defective items and up to h inhibitor items in n items.

Theorem 5. Let 1 ≤ z, d+h ≤ n be integers, z be odd, and λ = (d+h) lnn
W((d+h) lnn)

+z. A set of n items includes
up to d defective items and up to h inhibitors. Then there exists a nonrandom matrix v × n such that
up to d defective items and up to h inhibitor items can be identified in time O

(
dλ6 ×max

{
λ

(d+h)2
, 1
})

,
with up to e = z−1

2
errors in the test outcomes, where v = Θ (λ3 log n). Moreover, each column of the

matrix can be generated in time poly(v).

To detect both up to h inhibitors and d defectives, we have to use two types of matrices: an (d+ h; z]-
disjunct matrix and an (d+ h− 2, 2; z]-disjunct matrix. The main idea is as follows. We first identify all
defective items. Then all potential inhibitors are located by using an (d+h− 2, 2; z]-disjunct matrix. The
final procedure is to remove all false inhibitor items.

A. Identification of an inhibitor
Let ∨ be the notation for the union of the column corresponding to the defective item and the column

corresponding to the inhibitor item. We suppose that there is an outcome o := (o1, . . . , os)
T = Sa∨Sb,

where the defective item is a and the inhibitor item is b, and that Sa and Sb are two columns in the s×n
matrix S in (6). Note that oi = 1 iff sia = 1 and sib = 0, and oi = 0 otherwise, for i = 1, . . . , s. Assume
that the defective item a is already known. The inhibitor item b is identified as in Algorithm 3.
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Algorithm 3 GetInhibitorFromADefective(o,Sa, n): identification of an inhibitor when defective item
and union of corresponding columns are known.
Input: outcome vector o := (o1, . . . , os) = Sa ∨ Sb; number of items n; vector Sa corresponding to
defective item a
Output: inhibitor item b

1: s = 2 log n.
2: Set Sb = (s1b, . . . , ssb)

T = (−1,−1, . . . ,−1)T .
3: for i = 1 to s do . Obtain s/2 entries of Sb.
4: if sia = 1 and oi = 1 then sib = 0.
5: end if
6: if sia = 1 and oi = 0 then sib = 1.
7: end if
8: end for
9: for i = 1 to s/2 do . Obtain s/2 remaining entries of Sb.

10: if sib = −1 then sib = 1− si+s/2,b.
11: end if
12: if sib = 0 then si+s/2,b = 1.
13: end if
14: if sib = 1 then si+s/2,b = 0.
15: end if
16: end for
17: Get index b by checking first half of Sb.
18: return b. . Return the inhibitor item.

The correctness of the algorithm is described here. Step 2 initializes the corresponding column of
inhibitor b in S. Since column Sa has exactly s/2 1’s, Steps 3 to 8 are to obtain s/2 positions of Sb.
Since the first half of Sa is the complement of its second half, it does not exist two indexes i0 and i1
such that si0a = si1a = 1, where |i0 − i1| = log n. As a result, it does not exist two indexes i0 and i1
such that si0b = si1b = −1, where |i0 − i1| = log n. Moreover, the first half of Sb is the complement of
its second half. Therefore, the remaining s/2 entries of Sb can be obtained by using Steps 9 to 16. The
index of inhibitor b can be identified by checking the first half of Sb, which is done in Step 17. Finally,
Step 18 returns the index of the inhibitor.

It is easy to verify that the decoding complexity of Algorithm 3 is O(s).
Example: Let S be the matrix in (7), i.e., n = 8 and s = 6. Given item 1 is the unknown inhibitor

and that item 3 is the known defective item, assume that the observed vector is o = (0, 1, 0, 0, 0, 0)T .
The corresponding column of the defective item is S3. We set Sb = (−1,−1,−1,−1,−1,−1)T . We get
Sb = (−1, 0,−1, 1,−1, 1)T from Steps 3 to 8 and the complete column Sb = (0, 0, 0, 1, 1, 1)T from Steps 9
to 16. Because the first half of Sb is (0, 0, 0)T , the index of the inhibitor is 1.
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B. Encoding procedure

We set e = z−1
2

and λ = (d+h) lnn
W((d+h) lnn)

+ z. Let an m × n matrix M and a g × n matrix G be an
(d+ h; z]-disjunct matrix and an (d+ h− 2, 2; z]-disjunct matrix in Corollary 1, respectively, where

m = Θ

((
(d+ h) lnn

W((d+ h) lnn)
+ z

)2
)

= Θ
(
λ2
)
,

g = Θ

((
(d+ h) lnn

W((d+ h) lnn)
+ z

)3
)

= Θ
(
λ3
)
.

Each column in M and G can be generated in time t1 and t2, respectively, where

t1 = O

(
λ3

(d+ h)2

)
, (14)

t2 = O

(
λ4

(d+ h)2

)
. (15)

The final v × n measurement matrix V is

V =

M} S
G } S
G

 =

TH
G

 , (16)

where T =M} S and H = G } S. The sizes of matrices T and H are t× n and h× n, respectively.
Then we have t = ms = 2m log n and h = gs = 2g log n. Note that the matrix T is the same as the one
in (11). The number of tests of the measurement matrix V is

v = t+ h+ g = ms+ gs+ g = O((m+ g)s) = Θ
(
λ3 log n

)
.

Then it is easy to see that each column of matrix V can be generated in time (t1 + t2)× s+ t2 = poly(v).
Any input vector x = (x1, . . . , xn)T ∈ {0, 1,−∞}n contains at most d 1’s and at most h −∞’s as

described in Section I-B. The outcome vector using measurement matrix T , i.e., y = T ⊗ x, is the same
as the one in Section IV-A. The binary outcome vector using the measurement matrix H is

h = H⊗ x =


h1

...

hg

 =



h1
...
hs
...

h(g−1)s+1

. . .
hgs


, (17)

where hi = (S × diag(Gi,∗)) ⊗ x, h(i−1)s+l = 1 iff
∑n

j=1 gijsljxj ≥ 1, and h(i−1)s+l = 0 otherwise, for
i = 1, . . . , g, and l = 1, . . . , s. Therefore, the outcome vector using the measurement matrix V in (16) is:

v = V ⊗ x =

TH
G

⊗ x =

T ⊗ x
H⊗ x
G ⊗ x

 =

yh
g

 , (18)

where y is as same as the one in Section IV-A, h is defined in (17), and g = G ⊗ x = (r1, . . . , rg)
T . We

assume that 0× (−∞) = 0 and there are at most e = (z− 1)/2 incorrect outcomes in the outcome vector
v.
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C. Decoding procedure
Given outcome vector v, number of items n, number of tests in matrix M, number of tests in matrix
G, maximum number of errors e, and functions to generate matrix V , G, M, and S . The details of the
proposed scheme is described in Algorithm 4. Steps 1 to 2 are to divide the outcome vector v into three
smaller vectors y,h, and g as (18). Then Step 3 is to get the defective set. All potential inhibitors would
be identified in Steps 5 to 12. Then Steps 14 to 23 are to remove most of false inhibitors. Since there
may be some duplicate inhibitors and some remaining false inhibitors in the inhibitor set, Step 25 to 31
are to remove the remaining false inhibitors and make each element in the inhibitor set unique. Finally,
Step 32 is to return the defective set and the inhibitor set.

D. Correctness of the decoding procedure
Because of the construction of V , the three vectors split from the outcome vector v in Step 2 are

y = T ⊗ x,h = H⊗ x, and g = G ⊗ x. Therefore, the set D achieved in Step 3 is the defective set as
analyzed in Section IV.

Let H be the true inhibitor set which we will identify. Since G is an (d + h − 2, 2; z]-disjunct matrix
G, for any j1 ∈ H (we have not known H yet) and j2 ∈ D, there exists at least z rows i0’s such that
gi0j1 = gi0j2 = 1 and gi0j′ = 0, for all j′ ∈ D ∪H \ {j1, j2}. Then, since there are at most e = (z − 1)/2
errors in v, there exists at least e+ 1 = (z− 1)/2 + 1 index i0’s such that hi0 = Sj1∨Sj2 . As analyzed in
Section V-A, for any vector which is the union of the column corresponding to the defective item and the
column corresponding to the inhibitor item, the inhibitor item is always identified if the defective item is
known. Therefore, the set H∗0 obtained from Steps 7 to 12 contains all inhibitors and may contain some
false inhibitors. Our next goal is to remove false inhibitors.

To remove the false inhibitors, we first remove all defective items in the set H∗0 as Step 16. Therefore,
there are only inhibitors and negative items in the set H∗0 after implementing Step 16. One needs to exploit
the property of the inhibitor that it will make the test outcome negative if there are at least one inhibitor
and at least one defective in the same test. We pick an arbitrary defective item y ∈ D and generate its
corresponding column Gy in the matrix G. Since G is an (d+ h− 2, 2; z]-disjunct matrix G and there are
at most e = (z − 1)/2 errors in v, for any j1 ∈ H (we have not known H yet) and y ∈ D, there exists
at least z − e = e+ 1 rows i0’s such that gi0j1 = gi0y = 1 and gi0j′ = 0, for all j′ ∈ D ∪H \ {j1, y}. The
outcome of these tests would be negative. Therefore, Steps 14 to 23 removes most of false inhibitors.
Note that since there are at most e errors, the are at most e false inhibitors and each of them appears at
most e times in the set H∗0 . Then Step 25 to 31 are to completely remove false inhibitors and make each
element in the inhibitor set unique. Finally, Step 32 returns the sets of defective items and inhibitor items.

E. Decoding complexity
First, we find all potential inhibitors. It takes time O(v) for Step 2. The time to get the defective set

D is O
(
sm2.5

(d+h)2

)
= O

(
λ5 logn
(d+h)2

)
as analyzed in Theorem 4. Steps 7 and 8 have up to g and |D| ≤ d

loops, respectively. Since Step 9 takes time O(s), the running time from Steps 7 to 12 is O(gds) and the
cardinality of H∗0 is up to gd.

Second, we analyze the complexity of removing false inhibitors. Step 15 takes time t1 as in (14). Since
|H∗0 | ≤ gd, the number of loops at Step 17 is at most gd. For the next step, it takes time t2 for Step 18
as in (15). And it takes time O(g) from Steps 19 to 22. As a result, it takes time O(t1 + gd(t2 + g)) for
Steps 14 to 23.

Finally, Steps 25 to 31 are to remove duplicate inhibitors in the new defective set H. It takes time
O(gd) to do that because we know |H∗0 | ≤ gd.
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Algorithm 4 GetInhibitors(v, n, e,m, g): identification of up to d defectives and up to h inhibitors.
Input: outcome vector v; number of items n; number of tests in matrix M; number of tests in matrix
G; maximum number of errors e; and functions to generate matrix V , G, M, and S
Output: defective items and inhibitor items

1: s = 2 log n. . number of rows in the matrix S.
2: Divide vector v into three smaller vectors y,h, and g such that v = (yT ,hT ,gT )T and number of

entries in y,h, and g are ms, gs, and g, respectively.
3: D = GetDefectivesWOInhibitors(y, n, e). . defective set.
4: � Find all potential inhibitors.
5: Divide vector h into g smaller vectors h1, . . . ,hg such that h = (hT1 , . . . ,h

T
g )T and their size are

equal to s.
6: H∗0 = ∅. . Initialize inhibitor multiset.
7: for i = 1 to g do . Scan all outcomes in h.
8: foreach x ∈ D do
9: i0 = GetInhibitorFromADefective(hi,Sx, n).

10: Add item i0 to multiset H∗0 .
11: end foreach
12: end for
13: � Remove most of false inhibitors.
14: Assign (r1, . . . , rg)

T = g.
15: Generate a column Gy for any y ∈ D. . Get the column of a defective.
16: H∗0 = H∗0 \D.
17: foreach x ∈ H∗0 do . Scan all potential inhibitors.
18: Generate column Gx
19: if ∃i0 ∈ [g] : gi0x = gi0y = 1 and ri0 = 1 then
20: Remove all elements that equal x in H∗0 . . Remove the false inhibitor.
21: break;
22: end if
23: end foreach
24: � Completely remove false inhibitors and duplicate inhibitors.
25: H = ∅.
26: foreach x ∈ H∗0 do
27: if x appears in H∗0 at least e+ 1 times then
28: H = H ∪ {x}.
29: Remove all elements that equal x in H∗0 .
30: end if
31: end foreach
32: return D and H . . Return set of defective items.

In summary, the decoding complexity is:

O

(
sm2.5

(d+ h)2

)
+O(gds) +O(t1 + gd× (t2 + g)) +O(gd)

= O

(
sm2.5

(d+ h)2

)
+O(gd(t2 + g))

= O

(
λ5 log n

(d+ h)2

)
+O

(
dλ3 ×

(
λ4

(d+ h)2
+ λ3

))
= O

(
dλ6 ×max

{
λ

(d+ h)2
, 1

})
.
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Fig. 1: Number of tests versus number of de-
fectives and number of inhibitors for identifying
only defective items when there is no error in test
outcomes.
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Fig. 2: Number of tests versus number of de-
fectives and number of inhibitors for identifying
only defective items with presence of erroneous
outcomes.

VI. SIMULATION

In this section, we visualize number of tests and decoding times in Table I. We evaluated variations of
our proposed scheme by simulation using d = 2, 4, . . . , 210, h = 0.2d, and n = 232 in Matlab R2015a on an
HP Compaq Pro 8300SF desktop PC with a 3.4-GHz Intel Core i7-3770 processor and 16-GB memory.
Two scenarios are considered here: identification of defective items (corresponding to section IV) and
identification of defectives and inhibitors (corresponding to section V). For each scenario, two models of
noise are considered in test outcomes: noiseless setting and noisy setting. In noisy setting, the number of
errors is set to be as 100 times as the summation of the number of defective items and the number of
inhibitor items. Moreover, in some special cases, the number of items and the number of errors may be
reconsidered.

All figures are plotted in 3 dimensions in which the x-axis (on the right of figures), y-axis (in the
middle of figures), z-axis (the vertical line) represent for number of defectives, number of inhibitors, and
number of tests. Proposed scheme, Ganesan et al.’s scheme, and Chang et al.’s scheme are visualized with
red color with marker of circle, green color with marker of pentagram, and blue color with marker of
asterisk. In noisy setting, Ganesan et al.’s scheme is not plotted because the authors of that scheme did
not consider noisy setting.

Since our proposed scheme is nonrandom, the number of tests is slightly larger than the ones proposed
by Ganesan et al. and Chang et al. However, due to nonrandom construction, there is no requirement for
storing such big measurement matrices (millions of GBs needed) as the existing works.

For decoding time, when the number of items is sufficiently large, the decoding time in our proposed
scheme is smallest in comparison with the ones in Chang et al.’s scheme and Ganesan et al.’s scheme.

A. Identification of defective items
We illustrate number of tests and decoding time when defective items are the only items that we want

to recover here.
1) Number of tests: When there is no error in test outcomes, i.e., noiseless setting, the number of tests

proposed by Ganesan at al. is lowest. The number of tests in our proposed scheme is larger than the
number of tests proposed by Ganesan et al. and Chang et al. as illustrated in Fig. 1. However, when there
are some erroneous outcomes, i.e., noisy setting, the number of tests in our proposed scheme is lowest
as illustrated in Fig. 2.
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Fig. 3: Decoding time versus number of defectives and number of inhibitors for identifying only defective
items when there is no error in test outcomes.
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Fig. 4: Decoding time versus number of defectives and number of inhibitors for identifying only defective
items with presence of erroneous outcomes.

2) Decoding time: When there is no error in test outcomes, as shown in Fig. 3, the decoding time in
our proposed scheme is lowest. Since the decoding times in our proposed scheme and Ganesan et al.’s
scheme are slightly equal, only one line is visible in the left subfigure of Fig. 3. Therefore, we zoomed
in that line to see how close these two decoding times are. As plotted in the right subfigure of Fig. 3,
when the number of defective items and the number of inhibitor items are not quite large, the decoding
time in our proposed scheme is always smaller the one in Ganesan et al.’s scheme. As the number of
defective items and the number of inhibitor items increase, the decoding time in our proposed scheme is
first larger the one in Ganesan et al.’s scheme, though it become smaller in the end. We note that if the
number of defective items and inhibitor items are fixed while the number of items is sufficiently large,
the decoding time in our proposed scheme is always smaller than the ones in Chang et al.’s scheme and
Ganesan et al.’s scheme.

When some erroneous outcome are allowed, the decoding time in our proposed scheme is always
smaller than the one in Chang et al.’s scheme as shown in Fig. 4.

B. Identification of defectives and inhibitors
We illustrate number of tests and decoding time for classifying all items. Due to the presence of inhibitor

items and exact classification, the number of tests is larger the number of items in Chang et al.’s scheme
and the proposed scheme. The only exception is that number of tests proposed by Ganesan et al. is smaller
than the number of items.
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(a) Normal scale.
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(b) Magnifying scale.

Fig. 5: Decoding time versus number of defectives and number of inhibitors for classifying items when
there is no error in test outcomes.
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Fig. 6: Number of tests versus number of de-
fectives and number of inhibitors for classifying
items when the number of erroneous outcomes is
as 10 times as the total numbers of defective items
and inhibitor items.
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Fig. 7: Number of tests versus number of de-
fectives and number of inhibitors for classifying
items when the number of erroneous outcomes is
as 100 times as the total numbers of defective
items and inhibitor items.

1) Number of tests: When there is no error in test outcomes, i.e., noiseless setting, the number of tests
proposed by Ganesan et al. is lowest and the one in our proposed scheme is largest as illustrated in Fig. 5.

When there are some erroneous outcomes, i.e., noisy setting, the number of tests in our proposed scheme
is smaller or larger than the one is proposed by Chang et al. according to the number of erroneous
outcomes. For example, if the number of erroneous outcomes is as 10 times as the total numbers of
defective items and inhibitor items, the number of tests in our proposed scheme is smaller than the
number of tests is proposed by Chang et al. as illustrated in Fig. 6. However, when the number of
erroneous outcomes is as 100 times as the total numbers of defective items and inhibitor items, the
number of tests in our proposed scheme is larger than the number of tests is proposed by Chang et al. as
in Fig. 7.

2) Decoding time: It is in principle that the complexity of the decoding time in our proposed scheme
is smallest in comparison with the ones in Chang et al.’s scheme and Ganesan et al.’s scheme when the
number of items is sufficiently large. When there are no errors in test outcomes, the decoding time of the
proposed scheme is smallest when the number of items is at least 266, as shown in subfigure (b) of Fig. 8.
When some erroneous outcome are allowed, the decoding time in our proposed scheme is always smaller
than the one in Chang et al.’s scheme when the number of items is at least 261, as shown in subfigure (b)
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(a) n = 232
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(b) n = 266

Fig. 8: Decoding time versus number of defectives and number of inhibitors for classifying items when
there is no error in test outcomes.
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(b) n = 261

Fig. 9: Decoding time versus number of defectives and number of inhibitors for classifying items when
there are some erroneous outcomes.

of Fig. 9.

VII. CONCLUSION

We have presented two schemes for efficiently identifying up to d defective items and up to h inhibitors
in the presence of e erroneous outcomes in time poly(d, h, e, log n). This decoding complexity is substan-
tially less than that of state-of-the-art systems in which the decoding complexity is linear to the number of
items n, i.e., poly(d, h, e, n). However, the number of tests with our proposed schemes is slightly higher.
Moreover, we have not considered an inhibitor complex model [15] in which each inhibitor in this work
would be transferred to a bundle of inhibitors. Such a model would be much more complicated and is
left for future work.
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