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Abstract. This paper examines the ambiguity of subjective judgments,
which are represented by a system of pairwise preferences over a given
set of alternatives. Such preferences are valued with respect to a set of
reasons, in favor and against the alternatives, establishing a complete
judgment, or viewpoint, on how to solve the decision problem. Hence,
viewpoints entail particular decisions coming from the system of prefer-
ences, where the preference-based reasoning of a given viewpoint holds
according to its soundness or coherence. Here we explore such a coherence
under the frame of ambiguity measures, aiming at learning viewpoints
with highest preference-score and minimum ambiguity. We extend ex-
isting measures of ambiguity into a multi-dimensional fuzzy setting, and
suggest some future lines of research towards measuring the coherence or
(ir)rationality of viewpoints, exploring the use of information measures
in the context of preference learning.
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1 Introduction

Any subjective decision process requires considering the formation of opinions,
like preferences over a given set of possible choices. Examples of such a process
can be political elections, an investment project competition, or much simpler
choices like deciding which product to buy. Then, based on a set of attributes, e.g.
the nutritional attributes of different alternatives, referring to calories, minerals,
and proteins, preferences are formed by considering the reasons in favor and
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against the alternatives, on how the amount of calories, minerals or proteins
make us prefer and/or reject one alternative over the other. In general, the set
of reasons act as arguments on which plan of action to take, like matching reasons
one against the other, trying to balance the overall preference under a definite
viewpoint. Hence, preferences have a key role in understanding the most suitable
decision(s), and the less uncertain or ambiguous ones.

Traditionally, preference-based decision-making has been understood accord-
ing to the theoretical (uni-polar) concept of wants/desires, as presented by classi-
cal decision theory (see e.g. [4]). Nonetheless, it has been suggested that decisions
can be better understood according to the pair of explanatory concepts of wants
and needs (see [9, 13]), acting as drivers for decision-making. Following this line
of research, the components of wants and needs can be inferred from global
preferences under more general, opposite-paired semantics [10, 12, 16]. Besides,
such a semantics also allows understanding different indecision states that can
explain the choice of, actually, not making a decision [10]. In this same line,
it is proposed that opposite-paired preferences allow representing the emotional
meaning associated to judgments, stressing that emotion goes hand in hand with
rational decision-making [10].

In this way, this study focuses on how to measure the ambiguity of preference
arguments, addressing the question on how irrational can a decision be. For doing
so, the next section introduces the frame for subjective fuzzy preferences and the
preference-aversion model. Then we present in Section 3 our proposal on decision
viewpoints, obtaining a decision outcome and its overall ambiguity. In order to
measure ambiguity, we explore in Section 4 the notion of ambiguity as it has been
studied in decision theory literature, and extend classical ambiguity measures
over multiple dimensions by fuzzy logic operators. Finally, some final comments
are given for future research.

2 Decision modeling by fuzzy preferences

Given a set of alternatives A, standard preference modeling understands the
preference predicate R(a, b) as “a is not worse than b” or “a is at least as wanted
as b” [8]. The pairwise relation representing such a predicate, namely the weak
or global preference relation R ∈ {0, 1}, can be decomposed into four distinct
relations. These relations are strict preference P , the inverse strict preference
P−1, indifference I, and incomparability J , such that P = R∩¬R−1, I = R∩R−1,
and J = ¬R ∩ ¬R−1, where ¬R = 1 − R. Also consider that Rd = ¬R−1 =
(¬R)−1. Under this classical/crisp setting, the relations I and J are assumed to
be symmetrical, such that I(a, b) = I(b, a) and J(a, b) = J(b, a); I is assumed
to be reflexive, such that I(a, a) = 1; J irreflexive, such that J(a, a) = 0; and
P is assumed to be asymmetrical, such that P (a, b) and P (b, a) cannot hold
simultaneously true.
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2.1 The standard fuzzy model

Following the classical/crisp preference setting, the standard preference structure
〈P, I, J〉 consists in the mutually exclusive relations P, I, J : P ∩I = ∅, P ∩J = ∅,
and J ∩ I = ∅, partitioning the valuation space in the following way:

P ∪ I = R, (1)

P ∪ I ∪ P−1 = R ∪R−1, (2)

P ∪ J = Rd, (3)

P ∪ P−1 ∪ I ∪ J = A2. (4)

Allowing the different relations to simultaneously co-exist with different in-
tensities, the standard structure can be extended through fuzzy logic, affirming
the existence of continuous functions p, p−1, i, j : [0, 1]2 → [0, 1] that maintain
the classical properties Eqs. (1)-(4) as much as possible [8]. In this way, the
preference relation R can be represented as a fuzzy relation, such that

R(a, b) = {〈a, b, µR(a, b)〉|a, b ∈ A},

where µR(a, b) : A2 → [0, 1] is the membership function of R, measuring the
degree or intensity in which the pair (a, b) ∈ A2 verifies the preference predicate
represented by R.

Recalling some traditional principles of social choice theory (see e.g. [1, 8]),
the standard fuzzy model assumes independence of irrelevant alternatives, such
that for every pair of alternatives a, b ∈ A, the values of P (a, b), P−1(a, b), I(a, b)
and J(a, b) depend only on the pair (a, b), through the weak preference functions
x = µR(a, b) and y = µR(b, a). So, it holds that P (a, b) = p(x, y), P−1(a, b) =
p(y, x), I(a, b) = i(x, y) and J(a, b) = j(x, y). Besides, other classical principles
are assumed, like monotonicity or positive association, stating that functions
p(x, n(y)), p−1(n(x), y), i(x, y) and j(n(x), n(y)) are non-decreasing over both
arguments, where n is a strict negation, and symmetry, affirming the symmetry
of the functions i(x, y) and j(x, y) (see again [8], but also [17]).

2.2 Preference-Aversion fuzzy model

The standard fuzzy model can be generalized under a paired setting, aiming at
clarifying the semantics for the preference predicate, and completely specify its
valuation space [9, 10]. Hence, two separate sources of information can be con-
sidered, representing the positive and the negative aspects of alternatives, with
respect to the available criteria or attributes, serving as reasons or arguments
for evaluating the verification of the preference predicate.

In this way, R+(a, b) = R(a, b) =a is at least as wanted as b and its inverse
R+(b, a), evaluate the source of positive information, while the negative counter-
part allows evaluating the negative preference predicate R−(a, b) =a is at least
as rejected as b and its inverse R−(b, a). To simplify notation, from now on we
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say that R+(a, b) = Q(a, b), R+(b, a) = Q(b, a) = Q−1(a, b), R−(a, b) = V (a, b)
and R−(b, a) = V (b, a) = V −1(a, b).

These positive and negative preference components can be aggregated into
more complex structures, such as the Partial Comparability or the Preference-
Aversion (P-A) structures. Following [10], the P-A structure in fact allows dis-
tinguishing between wants and needs, measuring positive aspects according to
(Q,Q−1), and measuring the negative ones through (V, V −1).

Like a semi-dual or opposite of preference, the aversion structure can be seen
as a separate, negative counterpart of the standard preference structure. In this
sense, ∀(a, b) ∈ A2, the weak aversion predicates (V, V −1) can be decomposed
into the three relations Z,G,H, where Z(a, b) holds if a is more rejected than
b, G(a, b) holds if a is as much as rejected as b, and H(a, b) holds if a cannot
be compared with b regarding their negative aspects (see e.g. [10]). Hence, the
fuzzy P-A model can be defined by representing the predicates Q and V , as in

µQ, µV : A2 → [0, 1],

and defining fuzzy preference-aversion relations

p, i, j, z, g, h : [0, 1]2 → [0, 1]

such that [8, 9]

P = p(µQ, µQ−1) = T (µQ, n(µQ−1)),

I = i(µQ, µQ−1) = T (µQ, µQ−1),

J = j(µQ, µQ−1) = T (n(µQ), n(µQ−1)),

Z = z(µV , µV −1) = T (µV , n(µV −1)),

G = g(µV , µV −1) = T (µV , µV −1),

H = h(µV , µV −1) = T (n(µV ), n(µV −1)),

where T is a (conjunctive operator) t-norm, used for aggregating pairs of values of
the same positive or negative nature, and i, j, g and h are symmetrical functions.
Then, by means of a (disjunctive operator) t-conorm S, and following Eqs. (1)-
(4), the classical properties can be formulated in fuzzy terms as

S(p, i) = µQ, (5)

S(p, i, p−1) = S(µQ, µQ−1), (6)

S(p, j) = n(µQ), (7)

S(p, p−1, i, j) = 1, (8)

while the aversion ones are stated as

S(z, g) = µV , (9)
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S(z, g, z−1) = S(µV , µV −1), (10)

S(z, h) = n(µV ), (11)

S(z, z−1, g, h) = 1. (12)

Some solutions for functions (p, i, j) and (z, g, h), fulfilling (5)-(8) and (9)-
(12), are given by the De-Morgan triple (TL, SL, n) [8],

p(µQ, µQ−1) = TM (µQ, n(µQ−1)),

i(µQ, µQ−1) = TL(µQ, µQ−1),

j(µQ, µQ−1) = TL(n(µQ), n(µQ−1)),

and
z(µV , µV −1) = TM (µV , n(µV −1)),

g(µV , µV −1) = TL(µV , µV −1),

h(µV , µV −1) = TL(n(µV ), n(µV −1)),

where n now denotes a strong negation, and ∀x, y ∈ [0, 1], TL(x, y) = max(x+y−
1, 0), TM = min(x, y), and S = SL = min(x+y, 1). Besides, the functions i and j
are mutually exclusive, as well as g and h. Other solutions regarding t-(co)norms
allow modeling p and z as strongly asymmetrical relations (by means of TL),
where the preference (5), (7)-(8), and the aversion conditions (9), (11)-(12), are
satisfied, but not (6) nor (10). One last solution is given by the multiplicative De
Morgan triple (T p, Sp, N), such that ∀x, y ∈ [0, 1], T p(x, y) = x ·y and S = Sp =
x+y−x·y, where all basic relations in (p, i, j) and (z, g, h) can simultaneously co-
exist, but without fulfilling (5)-(7) nor (9)-(11). This last solution only satisfies
completeness (8) and (12) [18].

2.3 Modeling decisions by opposite concepts

The decision problem can now be understood in terms of opposites [12, 16], where
the positive and negative dimensions of the preference-aversion structure have to
be aggregated into a unified outcome. One possibility for doing so is by inferring
the behavioral components of preference, which guide the decision process. In
this sense, wants and needs can be estimated from the preference statements,
distinguishable under the P-A model (as shown in [10]). In this way, W = wants
and D = needs are respectively defined with respect to the opposite poles of
preference for Q =wanting and for V=rejecting, such that

W = (Q ∩ ¬Q−1) (13)

and
D = Q ∩ ¬V, (14)

where W and D are paired concepts in the sense of [16].
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In this sense, the want-component W distinguishes a priority on only wanted
alternatives, based on the positive reasons, while the need component D dis-
tinguishes a priority on wanted and non-rejected alternatives, based on both
positive and negative reasons. As it has been shown in [10], the need component
can be estimated from the specific preference semantics of the P-A structure,
offering a decision-making criterion for a given system of preferences.

An operational example for estimating needs from preferences is given ∀a, b ∈
A, by

µD(a, b) = φO[T (µQ, n(µQ−1)), n(T (µV , n(µV −1)))], (15)

which can be simplified, in case n is an involutive strict negation, i.e. a strong
negation, as

µD(a, b) = φO[T (µQ, n(µQ−1)), T (n(µV ), µV −1)], (16)

where φO : [0, 1]2 → [0, 1] is an overlapping (conjunctive, not necessarily associa-
tive) operator [2], modelling the intersection of positive (Q), and negative (V )
preferences.

Let us note that the non-associativity of the aggregation operator φO is used
here to stress that positive and negative reasons cannot be grouped arbitrarily
without affecting the final outcome [10]. On the other hand, the want component
W is given by µW = T (µQ, n(µQ−1).

Hence, a decision can obey to the P-A overall preferential situations, mak-
ing a choice because of wanting or needing, but also postponing it, due to the
verification of some incomparable component, perhaps identifying ambivalence
or lacking reasons for comparing alternatives on solid grounds [9, 10]. Such rea-
soning for a preferential-argument should be explicit, by the following proposal
on decision viewpoints.

3 Decision viewpoints

We can understand the decision making process as an analytical search for the
alternatives that allow satisfying, or even maximizing a given set of attributes
or criteria. In general, decision making looks for a set of relevant reasons, or
the one compelling reason, for choosing the most suitable alternatives. From a
purely subjective perspective, by comparing pairs of alternatives regarding a set
of attributes or criteria, the individual finds reasons, or arguments, assigning a
positive or negative character to the specific property being measured by those
criteria, having a paired-opposite meaning for each criterion/attribute. In this
sense, a preference argument or viewpoint, refers to a whole system of preferences
(entailing a global order or decision), which has an associated pair of values: one
measuring the total value of preference (like an overall expected outcome), and
another measuring the coherence of the preference argument.

It is worth noticing that this proposal can be related to a more standard
multi-criteria decision approach on viewpoints [1], where a group of related cri-
teria make up the more general concept of a viewpoint, allowing to independently
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compare the expected decision outcomes of different viewpoints. In this sense,
we propose here a different approach, referring to reasons instead of groups of
criteria, and considering besides the outcome of a viewpoint, an information
measure on the (ir)rationality of that viewpoint.

In this way, a viewpoint Vh is defined on pairwise preference relations µ ∈ U ,
where U is the set of all fuzzy preferences relations, and µ = (µ1, µ2, ..., µm),
being m the number of reasons, such that

Vh : U → Ωh. (17)

In consequence, every viewpoint Vh obtains an outcome that is here measured
on a bi-variate space Ωh, like e.g. Ωh = [0, 1]2, where one variate ωh

1 takes on
the total suitability-outcome of the system of preferences µ, and the other ωh

2 ,
measures the inconsistency or ambiguity of the resulting preference order or
chain of preferences (what we call the preference argument or viewpoint).

The suitability-outcome ωh
1 expresses a global (positive and negative) total

preference value for viewpoint Vh (estimating the overall intensity of preference-
aversion). For instance, by denoting by m+ and m− the number of positive and
negative reasons, respectively, the global suitability-outcome could be directly
computed by

ωh
1 =

m+∑
i=1

k∑
j=1

w+
i µ

(+)
ij −

m−∑
i=1

k∑
j=1

w−i µ
(−)
ij , (18)

where w+
i , w

−
i are weights assigned to each reason; k is the number of compar-

isons among all the alternatives (excluding the diagonal/identity) on the prefer-
ence and aversion dimensions of the P-A model, such that k = |A|(|A| − 1); and
for any pair a, b ∈ A, indexed by j = 1, ..., k, under a specific reason i = 1, ...,m,

it holds that µ
(+)
ij = µQi

(a, b), and µ
(−)
ij = µVi

(a, b).

Notice that outcome ωh
1 can also be understood according to the want and

need components of the P-A structure (as in Eq. (16)), defined for the need-
viewpoint Vh=D. Then, by taking e.g. a grouping multidimensional operator over
M dimensions [5], φG : [0, 1]M → [0, 1], we can compute the overall outcome
ωh=D
1 , by

ωD
1 = φG

(
µD
ij

)
. (19)

In summary, the constitution of a decision viewpoint Vh requires the esti-
mation of a pair of outcomes {ω1, ω2}h. The first one, ω1, the suitability score,
expresses the overall intensity of preference which has to be computed from the
system of pairwise relations U . The second one, ω2, measures the soundness of
the viewpoint. In order to address this second value, we explore next ambiguity
measures (which have to be extended from their original formulations to op-
erate on the P-A structure), referring to the incoherence or irrationality of a
given viewpoint. In this sense, following Eq. (18), the decision problem can be
solved by finding the viewpoint (or need-viewpoint according to Eq. (19)) with
maximum outcome ωh

1 , while minimizing its ambiguity ωh
2 .
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4 Ambiguity measures for decision modeling

4.1 Fuzziness and ambiguity measures

Thinking about the notion of consistency for pairwise preference relations from
a fuzzy perspective, it can be explored as how close a pairwise relation is from
its crisp/extreme values. In this sense, it relates to fuzziness, and it serves as a
first approximation to measuring how far away can a preference relation, and
later a whole viewpoint be, from a completely rational strict judgment.

Examining the concept of fuzziness as the lack of distinction between a set Q
and its negation ¬Q [19], the intersection of both sets (both its affirmation and
its negation), suggests the idea of blurry frontiers or fuzziness. Such fuzziness F
can be defined as the intersection between the sets Q and n(Q), such that

F (Q) = T (Q,n(Q)).

The relation between ambiguity and fuzziness becomes more clear when
modeling opposition among concepts [12], identifying different types of oppo-
sition which may result not necessarily in a strict negation. Let’s recall that an
opposition operator [12] is defined for all relations µ ∈ [0, 1], by the function
O : [0, 1]→ [0, 1], such that O is involutive (i.e., O2 = I, where I is the Identity),
and ∀x, y, x′, y′ ∈ [0, 1], if µ(x, y) ≤ µ(x′, y′), then O(µ)(x′, y′) ≤ O(µ)(x, y)
holds true. In this way, assuming a particular negation operator n∗, it can be
said that the opposition will be of an antonym type, such that O ≤ n∗, or on
the contrary, O will be a sub-antonym operator such that O > n∗. This operator
allows us to model a semantic relation of opposition regarding any chosen nega-
tion n∗, obtaining one of two main families of opposites, that of being antonym
or sub-antonym.

Therefore, the antonym or the sub-antonym of a concept can be modeled by
O(Q), like e.g. Q = high, O(Q) = low or V = small, O(V ) = big, by means of
the opposite operator O, and overlapping operator φO, such that

F (Q) = φO(Q,O(Q)).

In this sense, fuzziness F (Q) refers to an imprecise frontier for understanding the
difference between both paired concepts Q and O(Q), and the middle state(s)
in between, capturing the ambiguity of the concept Q.

Ambiguity due to ignorance has been studied since the works of Knight [15]
and Keynes [14], where the interest was explicitly focused on what they called,
measurable and unmeasurable probabilistic-uncertainty. It was argued that ambi-
guity, understood as lack of knowledge [6, 7], played an important role in rational
learning for decision processes. Thereafter, Fishburn [7] suggested a function of
ambiguity, which was later extended to the fuzzy setting [19].

In its original version, an ambiguity measure (α∗) is defined for a reference
set X, and ∀B,C ∈ X, by

α∗ : X → [0, 1]

if, and only if, it satisfies the following three axioms [7]:
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1. A1. α∗(∅) = 0

2. A2. α∗(B) = α∗(¬B)

3. A3. α∗(B ∪ C) + α∗(B ∩ C) ≤ α∗(B) + α∗(C)

As mentioned above, these axioms have been extended into a fuzzy setting
[19], using the min and max operators for representing conjunction and disjunc-
tion, respectively.

4.2 Fuzzy-ambiguity measures

Here we propose an extension of Fishburn’s ambiguity axioms into a fuzzy set-
ting by means of overlapping, grouping and opposition operators. In this way,
ambiguity measures can be extended for measuring the overall ambiguity of fuzzy
(P-A) relations.

Given a reference set of all fuzzy sets X (or all fuzzy preferences, where
X = U), grouping and overlap operators φG, φO, and an opposition operator O,
the function

α : X → [0, 1]

is a fuzzy-ambiguity measure if, and only if, it satisfies the following three axioms
(∀µB , µC ∈ X):

1. F1. α(∅) = 0

2. F2. α(µB) = α(O(µB))

3. F3. α(φG(µB , µC)) + α(φO(µB , µC)) ≤ α(µB) + α(µC)

Notice that such a fuzzy formulation of ambiguity depends on the specific opera-
tor used to model opposition, and at the same time, on the overlap and grouping
operators φO, φG, which allow the triangle inequality (F3) to hold.

In this way, for any pair of alternatives and their corresponding preference
relations µ ∈ U , some examples for fuzzy-ambiguity measures (modeling oppo-
sition by a strong negation) are Shannon’s entropy (also a measure of fuzziness
[19])

αent(µ) = −

(
m∑
i=1

µi ln(µi) +

m∑
i=1

n(µi) ln(n(µi))

)
,

or the sum of specificity measures [19],

αsp(µ) =
m− 1

m
(Sp(µ) + Sp(n(µ)))

where specificity measures the degree in which any set (of preferences) consists
of one and only one element [19].
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4.3 Ambiguity measures for decision viewpoints

In this section we will examine ambiguity measures for estimating the soundness
of decision viewpoints, denoted earlier by ωh

2 . Given a viewpoint Vh, its am-
biguity is computed by extending the examples presented above for ambiguity
measures for all the preference relations under Vh. That is, by extending the m-
dimensional space for considering every pairwise comparison (between all pairs
of alternatives) on A2.

Hence, the ambiguity of a given decision viewpoint can be computed by the
entropy-ambiguity

αent
h (Vh) =

−1

km

 m∑
i=1

k∑
j=1

µij ln(µij) +

m∑
i=1

k∑
j=1

n(µij)) ln(n(µij)))

 ,

where the km constant stands for the number of k comparisons and m reasons.

Example Consider a democratic voting example, where citizens vote for a public
authority among three candidates, such that A = {a, b, c}. Each candidate has
their own proposals, and the subjective evaluations of those proposals constitute
the reasons for valuing the preference-aversion intensities µ. That is, from each
proposal there is an associated positive meaning, given by µQ, and a negative
one, given by µV , acting in favor or against each candidate. The corresponding
preference and aversion relations for two types of voters, an indecisive and a
crisp voter, are given in Table 1.

Table 1. Preference and aversion relations for each pair of candidates (µQ, µV )

Indecisive a b c

a (0.3,0.8) (0.5,0.3)
b (0.9,0.2) (0.3,0.6)
c (0.9,0.4) (0.4,0.5)

Strict a b c

a (1,0) (1,0)
b (0,1) (0,1)
c (0,1) (1,0)

Taking equal weights for the positive and negative reasons in Eq. (18), the
score for the indecisive viewpoint is ωindecisive

1 = 0.5, and if we take the need-
outcome of Eq. (19), with a strong negation n(x) = 1− x, and the overlap and
grouping operators φO = min and φG = max, respectively, we obtain a score
of ωindecisive−need

1 = 0.7. On the other hand, computing ωindecisive
2 according to

the entropy-ambiguity αent, we obtain that αent = 0.57. Then it can be verified
that there is presence of ambiguity in the preferences of this indecisive voter.

Under the same setting, if we take a second viewpoint h = strict, of a strictly
crisp voter (with only strict transitive preferences), we obtain that ωstrict

1 = 1 =
ωstrict−need
1 , and ωstrict

2 = αent = 0. Then, for this type of strict voter with no
ambiguous judgments, his preferences reflect that a clear decision follows from
his complete argumentation.

As a result, the indecisive viewpoint reflects the greater ambiguity of the
voter’s preferences, having higher fuzziness than a strict voter, whose preferences
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are all strict judgments. As it could be expected, as preferences come closer to the
higher fuzzy intensities of 0.5, their ambiguity becomes higher, and the decision
problem appears to be more complex, or less clear.

Examining with greater detail the outcomes of the different viewpoints, it
would be relevant to study the reasons that receive greater ambiguity, and un-
derstand the decision problem according to those dimensions that become more
difficult to judge. Such dimensions may be of a complex nature, referring to a
set of simpler reasons that could be evaluated separately, aiming at explaining
the problem for the indecisive type of individuals.

5 Final comments

We have explored the proposal on decision viewpoints, which guide and explain
the decision making process according to its overall preference score, together
with information on its levels of coherence or (ir)rationality. For this purpose
we have examined ambiguity measures, presenting some examples for measur-
ing the ambiguity of decision viewpoints. Focusing on the proposal for decision
viewpoints, it is left for future research to examine viewpoints on specific strict
relations (taking µ = p), or only the indifference (µ = I) or incomparability
(µ = j) relations, or even considering separate viewpoints for the preference
and aversion structures. Then we could have strict, indifferent or incomparable
viewpoints, as well as preference or aversion viewpoints.

Further studies over information measures and viewpoints could go beyond
ambiguity, and consider also the coherence or rationality of arguments. Thinking
about the ambiguity of a single viewpoint, we can also think of measuring the
degree of concordance or coherence between groups of viewpoints. Then the
question would be how coherent the different viewpoints are. This coherence
could be understood as the consensus or dissention between two converging or
diverging opinions.

Another approach for thinking on the soundness of decisions is to explore
the rationality of judgments. In this sense, it would be desirable to think of
fuzzy rationality measures [3] and their extension for the P-A framework, where
the presence of cycles in preference chains entail lower degrees of rationality.
Besides, considering absolutely opposite opinions, or complementary opinions
µ and ¬µ, it is observed that complementary opinions should obtain the same
value of rationality (irrespective if we look at µ or ¬µ). In fact, this observation
can be understood as a foundational basis for the notion of rationality. As this
is a symmetry condition between µ and ¬µ, rationality can be characterized
in future work under both a symmetric and an asymmetric type of behaviors,
modeling opposite opinions, or arguments, by µ and O(µ).
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