Skip to main content

Route Planning for Teams of Unmanned Aerial Vehicles Using Dubins Vehicle Model with Budget Constraint

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11472))

Abstract

In this paper, we propose Greedy Randomized Adaptive Search Procedure (GRASP) with Path Relinking extension for a solution of a novel problem formulation, the Dubins Team Orienteering Problem with Neighborhoods (DTOPN). The DTOPN is a variant of the Orienteering Problem (OP). The goal is to maximize collected reward from a close vicinity of given target locations, each with predefined reward, using multiple curvature-constrained vehicles, such as fixed-wing aircraft or VTOL UAVs with constant forward speed, each limited by route length. This makes it a very useful routing problem for scenarios using multiple UAVs for data collection, mapping, surveillance, and reconnaissance. The proposed method is verified on existing benchmark instances and by real experiments with a group of three fully-autonomous hexarotor UAVs that were used to compare the DTOPN with similar problem formulations and show the benefit of the introduced DTOPN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007)

    Article  Google Scholar 

  2. Baca, T., Loianno, G., Saska, M.: Embedded model predictive control of unmanned micro aerial vehicles. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 992–997. IEEE (2016)

    Google Scholar 

  3. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)

    Article  Google Scholar 

  4. Bouly, H., Dang, D.C., Moukrim, A.: A memetic algorithm for the team orienteering problem. 4or 8(1), 49–70 (2010)

    Google Scholar 

  5. Butt, S.E., Cavalier, T.M.: A heuristic for the multiple tour maximum collection problem. Comput. Oper. Res. 21(1), 101–111 (1994)

    Article  Google Scholar 

  6. Campos, V., Martí, R., Sánchez-Oro, J., Duarte, A.: Grasp with path relinking for the orienteering problem. J. Oper. Res. Soc. 65(12), 1800–1813 (2014)

    Article  Google Scholar 

  7. Chao, I.M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996)

    Article  Google Scholar 

  8. Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J. Oper. Res. 88(3), 464–474 (1996). https://doi.org/10.1016/0377-2217(94)00289-4. http://www.sciencedirect.com/science/article/pii/0377221794002894

    Article  MATH  Google Scholar 

  9. Dang, D.-C., El-Hajj, R., Moukrim, A.: A branch-and-cut algorithm for solving the team orienteering problem. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 332–339. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_23

    Chapter  MATH  Google Scholar 

  10. Dang, D.C., Guibadj, R.N., Moukrim, A.: An effective pso-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res. 229(2), 332–344 (2013)

    Article  Google Scholar 

  11. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 2, pp. 1470–1477. IEEE (1999)

    Google Scholar 

  12. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  13. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  Google Scholar 

  14. Faigl, J., Krajník, T., Chudoba, J., Přeučil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 993–998. IEEE (2013)

    Google Scholar 

  15. Faigl, J., Pěnička, R., Best, G.: Self-organizing map-based solution for the orienteering problem with neighborhoods. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 001315–001321. IEEE (2016)

    Google Scholar 

  16. Faigl, J., Pěnička, R.: On close enough orienteering problem with dubins vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5646–5652 (2017)

    Google Scholar 

  17. Faigl, J., Váňa, P., Saska, M., Báča, T., Spurnỳ, V.: On solution of the dubins touring problem. In: 2017 European Conference on Mobile Robots (ECMR), pp. 1–6. IEEE (2017)

    Google Scholar 

  18. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Rob. Auton. Syst. 61(12), 1258–1276 (2013)

    Article  Google Scholar 

  19. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. 34(3), 307–318 (1987)

    Article  Google Scholar 

  20. Gulczynski, D.J., Heath, J.W., Price, C.C.: The close enough traveling salesman problem: a discussion of several heuristics. In: Alt, F.B., Fu, M.C., Golden, B.L. (eds.) Perspectives in Operations Research. Operations Research/Computer Science Interfaces Series, vol. 36, pp. 271–283. Springer, Boston (2006). https://doi.org/10.1007/978-0-387-39934-8_16

    Chapter  Google Scholar 

  21. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016)

    Article  MathSciNet  Google Scholar 

  22. Hodicky, J.: Autonomous systems operationalization gaps overcome by modelling and simulation. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 40–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_4

    Chapter  Google Scholar 

  23. Hodicky, J.: Standards to support military autonomous system life cycle. In: Březina, T., Jabłoński, R. (eds.) MECHATRONICS 2017. AISC, vol. 644, pp. 671–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65960-2_83

    Chapter  Google Scholar 

  24. Hodicky, J., Prochazka, D.: Challenges in the implementation of autonomous systems into the battlefield. In: 2017 International Conference on Military Technologies (ICMT), pp. 743–747. IEEE (2017)

    Google Scholar 

  25. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  26. Ke, L., Archetti, C., Feng, Z.: Ants can solve the team orienteering problem. Comput. Ind. Eng. 54(3), 648–665 (2008)

    Article  Google Scholar 

  27. Ke, L., Zhai, L., Li, J., Chan, F.T.: Pareto mimic algorithm: an approach to the team orienteering problem. Omega 61, 155–166 (2016)

    Article  Google Scholar 

  28. Krajník, T., et al.: A practical multirobot localization system. J. Intell. Rob. Syst. 76(3–4), 539–562 (2014)

    Article  Google Scholar 

  29. Lin, S.W.: Solving the team orienteering problem using effective multi-start simulated annealing. Appl. Soft Comput. 13(2), 1064–1073 (2013)

    Article  Google Scholar 

  30. Pěnička, R., Faigl, J., Váňa, P., Saska, M.: Dubins orienteering problem. IEEE Rob. Autom. Lett. 2(2), 1210–1217 (2017). https://doi.org/10.1109/LRA.2017.2666261. http://mrs.felk.cvut.cz/icra17dop

    Article  Google Scholar 

  31. Pěnička, R., Faigl, J., Váňa, P., Saska, M.: Dubins orienteering problem with neighborhoods. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1555–1562, June 2017

    Google Scholar 

  32. Robinson, J.: On the hamiltonian game (a traveling salesman problem). Technical report, Rand Project Air Force, Arlington, VA (1949)

    Google Scholar 

  33. Saska, M., et al.: System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Auton. Robots 41(4), 919–944 (2017)

    Article  Google Scholar 

  34. Saska, M., Vonásek, V., Krajník, T., Přeučil, L.: Coordination and navigation of heterogeneous mav-ugv formations localized by a ‘hawk-eye’-like approach under a model predictive control scheme. Int. J. Rob. Res. 33(10), 1393–1412 (2014)

    Article  Google Scholar 

  35. Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for dubins’ vehicle. In: Proceedings of the 2005 American Control Conference, pp. 786–791. IEEE (2005)

    Google Scholar 

  36. Souffriau, W., Vansteenwegen, P., Berghe, G.V., Oudheusden, D.: A greedy randomised adaptive search procedure for the team orienteering problem. In: EU/MEeting, pp. 23–24 (2008)

    Google Scholar 

  37. Spurny, V., Baca, T., Saska, M.: Complex manoeuvres of heterogeneous MAV-UGV formations using a model predictive control. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 998–1003. IEEE (2016)

    Google Scholar 

  38. Thakur, D., et al.: Planning for opportunistic surveillance with multiple robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5750–5757. IEEE (2013)

    Google Scholar 

  39. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984)

    Article  Google Scholar 

  40. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: A guided local search metaheuristic for the team orienteering problem. Eur. J. Oper. Res. 196(1), 118–127 (2009)

    Article  Google Scholar 

  41. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Metaheuristics for tourist trip planning. In: Sörensen, K., Sevaux, M., Habenicht, W., Geiger, M. (eds.) Metaheuristics in the Service Industry. LNE, vol. 624, pp. 15–31. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00939-6_2

    Chapter  MATH  Google Scholar 

  42. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

Presented paper has been supported by the Czech Science Foundation (GAČR) under research project No. 17-16900Y and by OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated. Support of the Grant Agency of the Czech Technical University in Prague No. SGS17/187/OHK3/3T/13 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zahrádka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zahrádka, D., Pěnička, R., Saska, M. (2019). Route Planning for Teams of Unmanned Aerial Vehicles Using Dubins Vehicle Model with Budget Constraint. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics