Retrieving Text-based Surrounding Objects in
Spatial Databases

Bojie Shen, Md. Saiful Islam, David Taniar and Junhu Wang

Abstract Retrieval of textually relevant non-dominated surrounding data objects has
many potential applications in spatial databases such as textually relevant nearby
point-of-interest retrieval surrounding a user. This paper presents a novel query,
called textually-relevant direction-based spatial skyline (TDSS), for retrieving textu-
ally relevant non-dominated surrounding data objects in spatial databases. The paper
also presents efficient algorithms for processing TDSS queries in spatial databases
by designing novel data pruning techniques using keyword inverted index and R-
Tree data indexing scheme. The effectiveness and efficiency of the proposed algo-
rithms are demonstrated by conducting extensive experiments.

1 Introduction

The retrieval of textually relevant non-dominated surrounding data objects has po-
tential applications in spatial databases. For example, consider a user who is looking
for nearby restaurants surrounding her (green point as shown in Fig. 1) that pro-
vide “Shushi”. A textually-relevant direction-based spatial skyline (TDSS) query
can return a number of restaurants surrounding her by trading off the direction and
distance {ry,73,74,75,76} as shown in Fig.1 as well as matching her preferred food
item. Though {r,rs} and r7 also provide “Shushi”, they are in the same directions

Bojie Shen
Monash University, Melbourne, Australia e-mail: bshe21 @student.monash.edu

Md. Saiful Islam
Griffith University, Griffith University, Gold Coast, Australia e-mail: saiful.islam @griffith.edu.au

David Taniar
Monash University, Melbourne, Australia e-mail: david.taniar@monash.edu

Junhu Wang
Griffith University, Griffith University, Gold Coast, Australia e-mail: j.wang @griffith.edu.au

Q

lorman

Yamato Japanese
Restaurant
Classic Japanese meals.

P,

Nihonshfi Shochu

ne City @ r3
Stalactites BerlinBal Facing Heay
. Be\m“ < |
2
Tsindos) (*]
Qo 4 o e’
Shujinko
Boilermaker House .

Shou glmiyaki - Gyoza Gyoza -
e Emerald Peacock Japagegf Restaurant... Q@ r Japanese Restaur:

JapdngEe BBQ & sake. 8 7 Hip restaurant for.

s ry Shoya Nouv
A o Chinatown Melbgj r 1Y Wafu Cuisir
< Q Flower Drumi
%, Restaurant Melbourne
= Spi Curry Corner Expansive & elegant

A
®
Wagaya Meljfourne alata Gane, e .
ot ™ R e our @ Hakata Gensuke Ramen
izakaya wilfa deck
Dragon Boat Restaurant I’6 QAuans Billy Hyde
High-end yum cha e
& late-night suppers e
A SR Kaneda Japanese goW
o r Restaurant
Target@ 77 Lively hub for sushi Izakaya Hachibeh
3 Room 8 Pool Lounge Russell St - Stop 78 (€] f\\/
JB Hi-Fi
Cotton On Body@ @ s 0] @ ~ovo Thai
oV é ol
Daiso Taco Bill Oli & Levi Cafe

Fig. 1: An application of TDSS queries for retrieving surrounding objects (results
produced by our query model)

as rp and rg, respectively and are also far from the user in comparison to r, and
re, respectively. There exists plenty of works on the retrieval of textually relevant
objects in spatial databases ([2, 3, 6,20,22,25] for survey). Unfortunately, none of
these works incorporates surroundingness in the retrieval of textually relevant data
objects from spatial databases.

The first work on direction based spatial skyline query (DSQ) for retrieving sur-
rounding data objects in spatial databases is proposed by Guo et al. [7,8]. The DSQ
query retrieves all data objects that are closest to the given query point and that are
not dominated by other data objects in their directions w.r.t. query point. The authors
propose that a data object p; should dominate another data object p; w.r.t. the query
object g if (i) both p; and p; are in the same direction according to the user-given
acceptance angle, i.e., {p;gp; < T, where 7 is the user-given acceptance angle and
(i) p; is closer to ¢ than pj, i.e., d(q, pi) < d(q,p;), where d(q, p;) denotes the Eu-
clidean distance between g and p;. This query model does not consider to emphasize
textual relevance on surrounding objects retrieval. The DSQ query also has two ma-
jor problems as given as follows: (i) missing result and (ii) instability. The missing
result problem is caused by the fact that a non-resultant data object can dominate
and filter other data objects. The instability problem is caused by the settings of the
user given acceptance angle. A small change in the acceptance angle can provide a
completely different result set and causes the instability issue.

Another work on surrounding objects retrieval is the nearest surrounder queries
(NSQ) proposed by Lee et al. [13, 14]. The authors propose an approach to retrieve
nearest surrounder objects of arbitrary shapes w.r.t. the given query point and argue
that surrounder objects should be visible from the query point. Unfortunately, none
of these works [7, 8, 13, 14] considers textual relevance in their approaches.

b "3 Object | Distance | Angle | Keywords
20 p1 27 34° | Australian, Burger, Fries
o o P2 14 45° | Australian, Steak, Dessert
" .Dz p3 22 72° | Australian, Pizza
.DG P P4 17 121° | Australian, Burger, Fries
e ps 9 139° | Chinese, Noodle, Dessert
q X Ps 16 155° | Australian, Burger, Fries
Py ° 10 20 p7 13 199° | ltalian, Pizza, Risotto, Dessert
° Ps .99 ps 10 237° | Australian, Burger, Fries, Dessert
° . Po 9 309° | Australian, Pizza, Dessert
.’311 P10 19 297° | Australian, Burger, Fries
&0 P11 23 324° | Japanese, Sushi

Fig. 2: A toy dataset for exemplifying the definitions and algorithms in this paper

To fill the research gap and alleviate the missing result and instability problems of
DSQ queries [7, 8], we propose a novel query called, Textually-relevant Direction-
based Spatial Skyline (TDSS), for retrieving textually relevant non-dominating sur-
rounding data objects in spatial databases. We propose directional zone (DZ) to
measure directional similarities among spatial data objects. We also develop novel
data pruning techniques based on keyword inverted list and R-tree data indexing and
propose two different algorithms to process TDSS queries in spatial databases. To
be specific, our main contributions are summarized below:

1. we propose directional zone to measure directional similarity between two spa-
tial data objects (Section 2);

2. we present a novel query called TDSS to retrieve textually relevant non-
dominating surrounding point data objects (Section 2);

3. we propose efficient algorithms to process TDSS queries in spatial databases by
designing novel pruning techniques based on keyword inverted list and R-tree
data indexing scheme (Section 3); and

4. we experimentally evaluate our proposed algorithms (Section 4).

2 Preliminaries

Data Model. We assume that P is a set of spatial data objects and an individual data
object p € P is modeled as a point in xy plane. The x and y coordinates of p € P
are denoted by p* and p” , respectively. The query object is also a point in xy plane
and is denoted by ¢. Each object p € P is associated with a set of keywords and is
denoted by p.y. The query keywords set is denoted by ¢.y. Data objects and points
are used interchangeably in this paper. We use the toy dataset given in Fig. 2 to
exemplify the definitions and algorithms provided the paper.

Definition 1. A data object p is said to be a keyword-match object iff p.y = q.y.

Definition 2. A keyword match data object p; dominates another keyword-match
data object p; w.r.t. a given query object g, denoted by p; < p;, iff the following

holds: (a) p; is directionally similar to p; w.r.t. ¢; and (b) d(q, p;) < d(q, p;), where
d(q, pi) denotes the distance between ¢ and p;.

From Definition 2, it is obvious that we need to establish (i) directional similarity

metric and (ii) distance metric to decide on the dominance between two spatial
data objects. For the distance metric, we rely on the Euclidean distance measure.
For directional similarity metric, in this pa- &
per we propose directional zone to model
the directional similarity among the spatial
data objects. Firstly, the direction of an ar-
bitrary point object p; w.r.t. the query g is
modeled by ﬁ Assume that the intersec- P3
tion point of the perpendicular line from \
point p; to g7, is denoted by I(pj, q7,). The s,
distance d(p;,I) can be used to measure - = —
how far p; deviates from the direction of p;
w..t. g. On the other hand, d(p;,I) can be
used to measure how far p; is away from ° * ® * N
pi according to the direction q_p>, We con-
sider p; has the same direction as p; w.r.t. ¢
if d(p;,I) > d(pj,I). To model the above, we rotate the ray qp; by 45° (up to this
limit we get d(p;,I) > d(pj,I)) both in clockwise and anticlockwise considering p;
as the center of origin. Assume that these rays are ;Tc) and ﬁ, respectively. Now,
the directional zone of p;, denoted by DZ(p;), is formed by the area bounded by ﬁ
and 173 as illustrated in Fig. 3 for data object p;.

.,
ap2

1A90°
90°
Py

X

Fig. 3: The directional zone of p;

Definition 3. A data object p; is considered to be directionally similar to a data
object p; w.r.t. the given query object ¢ in spatial data space if p; € DZ(p;).

Lemma 1. If p; € DZ(p;), then we get d(q,p;) < d(q,pj).
Lemma 2. If pj € DZ(p;), then we get p; < pj.

Definition 4. Given a set of spatial data objects P and a query point g, a textually-
relevant direction-based spatial skyline (TDSS) query for ¢, denoted by TDSS(q),
retrieves all keyword match data object p; € P if any of the following holds:

1. Ap; € P such that p; < p;, where p; is a keyword match data object; and
2. Apx € TDSS(q) and p; € P such that p; < p; and p; < p; but py £ pi, where
both p; and p; are keyword match data objects.

The above definition of TDSS queries for retrieving the surrounding data objects
closely matches the idea of global skyline [5] (i.e., union of the skylines in each
quadrant of the query point in 2D) which is rotationally invariant in spatial context.
Here, we also emphasize textual relevance through Definition 1, i.e., a TDSS query
retrieves only textually relevant non-dominated surrounding data objects.

3 Our Approach

This section presents our approach of processing TDSS queries in spatial databases.

3.1 Dominance Checking

Here, we explain our idea of checking the directional dominance between a pair of
spatial data points p; and p;. Firstly, we identify the perpendicular intersection point
I from the point p; to the ray cm and derive the following vector based calculation
to calculate the coordinates of the perpendicular intersection point /.

F=q +t(pi*—q) (1)
P=q +1(p’ —q") 2)
0= (L—p;)pi*—q)+ T —p?)(p’ —¢) 3)

By substituting the first two equations into the third, we get the following:

(pj* =) pi* —q) + (p/ —@") (P’ — &)
(P =q*) + (p¥ =)

Now, the directional dominance between p; and p; can be decided by comparing
the distance d(p;,I) and d(pj,I). However, we need to ensure that the intersec-
tion point / follows p; on the ray qAﬁ, so that the p; can be directionally domi-
nated by p;. For the above, we derive the following property: d(g,I) > d(q, p;) and
d(q,I) > d(p;,I) from observation. Finally, for p; to appear inside DZ(p;) we check
the following condition: d(p;,I) > d(pj,I). Otherwise, the point p; deviates from
the direction gp; and it must not be inside the DZ(p;). Based on the above formula-
tion, we can decide that py < p; and p, 4 p3 as illustrated in Fig. 3.

=

“)

3.2 TDSS Query Processing

This section proposes two algorithms for processing the TDSS queries in spatial
databases. Our first algorithm is called Keyword Filtering Based Approach (KFBA).
KFBA algorithm utilizes the keyword inverted index data structure to filter out the
non-keyword match objects based on the query keywords. The second approach is
a Branch and Bound Keyword Matching (BBKM) approach which progressively
matches query keywords after indexing the database objects into an R-tree. BBKM
also exploits the directional dominance between the current skyline points and the
bounding boxes in R-Tree data indexing to expedite the query processing.

3.2.1 Keyword Filtering Based Approach

The main idea of keyword filtering based approach (KFBA) is to take advantage
of the pruning power of the keyword inverted index, which is a mapping between
the database objects and the keywords. They keyword inverted index allows us to
quickly search for the objects that contain a specific keyword and can help us to

Table 1: The keyword inverted index of the toy dataset given in Fig. 2

| Keyword | pi | po | ps | pa | ps | ps | P7 | ps | po | pPio | pu |

Australian 1 1 1 1 0 1 0 1 1 1 0
Chinese 0 0 0 0 1 0 0 0 0 0 0
ITtalian 0 0 0 0 0 0 1 0 0 0 0
Japanese 0 0 0 0 0 0 0 0 0 0 1
Burger 1 0 0 1 0 1 0 1 0 1 0
Fries 1 0 0 1 0 1 0 1 0 1 0
Steak 0 1 0 0 0 0 0 0 0 0 0
Dessert 0 1 0 0 1 0 1 1 1 0 0
Pizza 0 0 1 0 0 0 1 0 1 0 0
Risotto 0 0 0 0 0 0 1 0 0 0 0
Sushi 0 0 0 0 0 0 0 0 0 0 1
Noodle 0 0 0 0 1 0 0 0 0 0 0

filter out the objects that do not match the query keywords ¢.y. Consider our toy
dataset given in Fig. 2 as an example, which contains a set of restaurants and the
corresponding keywords which describe the foods provided by each restaurant. The
inverted index lists all the keywords appeared and the corresponding objects in our
toy dataset as shown in Table 1. Now, if the user is only interested in the restaurants
which provide Australian food, then the objects {p1, p2, p3, P4, P6, P8, P9, P10} are
returned as keyword match objects. For multiple query keyword, we can simply
calculate the intersection set among keyword match objects of each query keyword.
After filtering data objects based on keyword inverted index, the next step is to
perform the dominance checking among them. However, the access order of the
database objects cannot be random as per the following lemma.

Lemma 3. The TDSS of a query point g will be correct if and only if we access
the database objects in order of their distances to q given that we compare their
dominances with the objects accessed so far.

Proof. Assume that there are three points {p1, p2, p3} and the following relation-
ships hold: (a) d(q, p1) < d(q, p2) < d(q, p3); (b) p2 € DZ(p1); (c) p3 € DZ(p2) and
(d) p3 & DZ(p1). Now, assume again that we access these points from the database
in the following order: first p;, then p; and p3 and compare their directional domi-
nances with the points accessed so far only. The TDSS result for the above would be
{p1,p2}, which is incorrect as per Definition 4. However, if we access them in the
following order: first pj, then p; and p3, the TDSS result would be {p1, p3}, which
is correct as per Definition 4. Hence, the lemma.

Algorithm Steps. The KFBA algorithm firstly constructs the keyword inverted
index of the dataset P. Then, it performs keyword based filtering to find keyword
match objects, Vp € P: p.y = g.y. After that, a min heap /7 is created by insert-
ing the filtered database objects P/ in order of their distances to the query point g.
Finally, we initialize the spatial skyline set S to @, then repeatedly retrieve the root
element e from 77 until .7 become (and append e to S iff As € S:s < e. The
above steps are pseudo-coded in Algorithm 1.

Algorithm 1: Keyword Filtering Based Approach (KFBA)

Input : ¢: query point, P: dataset

Output : S: a list of textually relevant spatial skyline objects

Initialization: S < 0
1 invertedIndex<« buildInvertedIndex(P); // build inverted index
2 P’ + searchKeywordMatchObjects(invertedIndex, ¢.y); // find keyword match

objects

3 + insert(P'); // insert P’ into min heap
4 while 77 # 0 do
5 e <« .pop() ; // pop the root element
6 if Ase€S:s<ethen
7 \ S < append(e); // e is a spatial skyline object
8 return S; // final spatial skyline set

3.2.2 Branch and Bound Keyword Matching

In this section, we present our branch and bound keyword matching approach which
is based on the R-tree indexing structure. The main idea of the BBKM approach is
to avoid the object-to-object dominance checking as much as possible by pruning
R-tree bounding boxes as per the following lemma.

Lemma 4. A bounding box Ry, in R-Tree can be safely pruned if s € S such that all
of the vertices of Ry are inside DZ(s), where S is the current skyline of the database
objects accessed so far in order of their distances to the query point q.

Proof. Every database object p € Ry, is bounded by the vertices of the bounding box
Ry in R-Tree. These vertices are the corner points of the minimum bounding box
Ry in R-Tree. Therefore, every p € Ry is inside DZ(s) as all the vertices of Ry are
inside DZ(s), i.e., p € DZ(s;), Vp € Ri. Now, every database object p € Ry has the
same direction as s w.r.t. g as well as d(q,s) < d(q,p) as p € DZ(s) (as per Section
2 and Lemma 1). Therefore, we get s < p, Vp € R; and the bounding box Ry, can be
pruned safely without further processing. Hence, the lemma.

Consider the dataset given in Fig 2 and the R-tree indexing given in Fig. 4. As-
sume that a user wants to search for the surrounding restaurants around her which
provide Australian food. In this case, the query keyword is g.y = {”Australian”}.
Here, the bounding box R4 can be directly eliminated as it is directionally domi-
nated by the data objects pg as per Lemma 4. Also, the data objects ps and p7 are
ignored during the processing as these two data objects do not contain the keyword
”Australian”, i.e., are nor keyword match objects.

Algorithm Steps. Based on Lemma 3 and Lemma 4, the BBKM approach can
be explained as given below. Firstly, the algorithm index the dataset P into an R-
tree, initialize the skyline result set S to @ and insert the root element e of R-Tree
into a min-heap ##. The BBKM keep accessing the top element e from 57 until
¢ becomes 0, the element e is examined further if As € S : s < e. There are three
case to consider as follows: (i) e is an intermediate node: we insert each child e; of

Fig. 4: R-Tree (MAX #entries=4) bounding boxes of the data in Fig. 2 and domi-
nance checking for BBKM

Algorithm 2: Branch and Bound Keyword Matching (BBKM)

Input : ¢: query point, R: R-Tree indexing of dataset P

Output : S: a list of textually relevant spatial skyline objects

Initialization: S < 0;
1 ¢ «insert(getRoot(R)) ; // insert root of R into min-heap 7
2 while 77 # 0 do
3 e <« .pop() ; // pop the root element
4 if Ase€S:s~<ethen
5 if e #leaf then // intermediate node in R-Tree
6 foreach child e; of e do
7 if As€ S:s5<e¢;then
8 ‘ S «insert(e;) ; // insert box e; into heap
9 else if e ==leaf then // leaf node in R-Tree
10 foreach child e; of e do
11 if AseS:s<e;andisKeywordMatch(e;) then
12 H «insert(e;) ; // insert object e¢; into heap
13 else // a database point
14 | S < append(e); // e is a spatial skyline point
15 return S; // final spatial skyline set

e, which is a R-tree node, into 57 iff As € S: 5 < ¢;; (ii) e is a leaf node, then we
insert each child ¢; of e, which is a database object, into 7 iff As € S:s < ¢; and
e; is a keyword match object; and (iii) e is a database object and is a keyword match
for g, i.e., e.y = q.y, we insert e into the skyline result set S. The above steps are
pseudo-coded in Algorithm 2. It should be noted that the min heap .7Z stores only
the R-tree nodes and keyword match objects.

4 Experiments

Setup. The experiments are conducted on both real and synthetic datasets. The real
dataset is a POI dataset, which contains 104770 locations in California (CA) [16].
We randomly select 25K, 50K, 75K and 100K points from this dataset as candi-
date points. We also generate synthetic (SYN) datasets consisting of 125K, 250K,
375K and 500K uniformly distributed points. We randomly create 50 query points
following the distribution of the datasets to report the performance of the tested al-
gorithms. Each point is assigned 10 random keywords from a keyword pool of 63
keywords. We randomly create 50 query points by following the distribution of the
dataset and assign 1-4 keywords to conduct our experiments. To index the datasets
in R-tree, we set MAX #entries in a R-Tree node to 20 — 50 and default setting is 30.
The algorithms are implemented in Java and experiments are conducted on a Mac
Laptop with 2 GHz Intel Core 17 CPU and 8 GB 1600 MHz DDR3 main memory.

Fig. 5: Non-dominated keyword match surrounding objects retrieval for an arbitrary
user via TDSS query model in CA dataset

4.1 Effectiveness Study

Here, we demonstrate the usefulness of our TDSS query model through a case study.
The case study result for an arbitrary user (query) in CA dataset is visualized in
Fig. 5, where the user is shown as green point. The gray points represent the non-
keyword matched POI objects, whereas the candidate keyword match POI objects
and the resultant objects are shown as blue and red, respectively. It is obvious that
our proposed TDSS query model can retrieve non-dominated surrounding keyword
match objects for an arbitrary user by trading-off the direction and distance.

4.2 Efficiency Study
This section presents the efficiency study of the proposed algorithms.

Effect of Query Keywords. Here, we examine of the effect of query keywords on
the efficiency of the proposed algorithms and the results are illustrated in Fig. 6. It
is evident from Fig. 6 that the proposed BBKM algorithm outperforms our KFBA
algorithm for lower number of query keywords (1 — 3). On the other hand, KFBA
algorithm performs better for higher number of query keywords (3 — 4 and more).
This is because, the KFBA algorithm ends up having only a few data objects after

keyword filtering and thereby, reduces the size of the heap significantly at run time.

o n 144.92
3 =
- » V] «rea E sBKM - V] «rea E sBKM
Eo 3013 £
= =
@ T o
£ =g =]
EQ e
=) =)
£ £
7} 7}
n 0
o N QQ
o o b
9 o 10.41 9 29.32
o - 552 o 241 19.54
155 283 41 398 536 8.02 %
o o

1 2 3 4 1 2 3
Number of Keywords Number of Keywords
(a) CA dataset (100K) (b) SYN dataset (500K)

Fig. 6: Effect of keywords: avg. processing time (ms) in (a) CA and (b) SYN datasets

6

-0-KFBA

“O°KFBA o
-A-BBKM m

-A-BBKM

4 5
10 15 20 25 30

ProcessingTime(ms)
2 3
B>
ProcessingTime(ms)

1
o

5
>

0
0

25k 50k 75k 100k 125k 250k 375k 500k
Cardinality Cardinality

(a) CA dataset (b) SYN dataset
Fig. 7: Effect of cardinality: avg. processing time (ms) in (a) CA and (b) SYN
datasets (|q.y| =2)

Effect of Data Cardinality. Here, we examine the effect of cardinality on the ef-
ficiency of our proposed algorithms and the results are shown in Fig 7. From Fig
7(a), it is evident that the KFBA algorithm runs faster than the BBKM algorithm
for lower cardinality(25K — 50K). On the other hand, the BBKM algorithm per-
forms much better for higher cardinality settings. From Fig 7(b), it is obvious that
the BBKM algorithm outperforms our KFBA algorithm for all cardinality settings
in SYN dataset. This is because the KFBA algorithm is time-consuming when there
are many objects after keyword filtering. Also, multiple keywords searching in in-
verted index structure for higher cardinality setting is time consuming.

Effect of R-tree Parameter. Here, Table 2: Avg. running time (ms) of BBKM al-
we examine the effect of R-tree pa- gorithm in CA and SYN datasets for different

rameter on the efficiency of BBKM gettings of MAX #entries in a R-tree node
algorithm and the results are shown

in Table 2 for [g.y| = 2. The pro- [Approach | 20 [30 [40 | 50 |

posed BBKM algorithm is toler- (A qataser [2.877]2.830]2.324]2.758

ant in all different R-tree MAX e qaracei 5,02 [8.02 | 9.18 | 7.4
#entries for both CA and SYN

datasets. However, it is hard to decide which R-tree parameter setting is optimum.
For the larger R-tree parameter setting, the BBKM algorithm may need to examine
more objects to find the TDSS result. However, the larger R-tree MAX #entries may
also have the advantage of pruning more objects that are inside a bounding box.

5 Related Work

The skyline operator proposed by Borzsony et al. [1] has gained significant attention
among the researchers [4,5,9-12, 18, 19] including the spatial database community
[15,17,21,23,24]. However, none of these approach considers surroundingness in
the non-dominating objects retrieval by trading off the distance and direction.

The direction-based spatial skyline query (DSQ) was first discussed by Guo et
al. [7,8] and they propose to retrieve data objects that surround the query point based
on user given angle threshold. The DSQ queries have missing result and instability
problems as discussed in Section 1. The nearest surrounder queries (NSQ) proposed
by Lee et al. [13, 14] retrieve nearest surrounder objects of arbitrary shapes that are
visible from the given query point. Both DSQ and NSQ queries do not emphasize
textual relevance of the retrieved objects.

Existing works on the retrieval of textually relevant objects in spatial databases
are quite established ([2,3,6,20,22,25] for survey). These works emphasize on trad-
ing off the spatial proximity and the textual relevance in spatio-textual data context,
rather than distance and direction. As these works do not consider surroundingness
in their retrieval system, they may return multiple objects in the same direction.

Our work differs from the existing works in the sense that we emphasize not only
the textual relevance in the retrieved objects, but also we trade off the direction and
distance to retrieve non-dominating surrounding objects for a given query point. Our
TDSS queries are also fair and free from missing result and instability problems.

6 Conclusion

In this paper, we have presented a novel query called textually-relevant direction-
based spatial skyline (TDSS) for retrieving textually relevant non-dominating sur-
rounding data objects in spatial databases. We have also presented efficient algo-
rithms to process TDSS queries in spatial databases. The proposed algorithms have
been evaluated by experimenting with both real and synthetic datasets.

Acknowledgement. This work was partially supported by a Griffith University’s
2018 New Researcher Grant with Dr. Md Saiful Islam being the Chief Investigator.
The first and second authors contributed equally in this paper.

References

. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421-430 (2001)

2. Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D., Yiu, M.L.: Spatial

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
. Shi, J., Wu, D., Mamoulis, N.: Textually relevant spatial skylines. IEEE Trans. Knowl. Data

23.
24.

25.

keyword querying. In: ER, pp. 16-29 (2012)

. Cary, A., Wolfson, O., Rishe, N.: Efficient and scalable method for processing top-k spatial

boolean queries. In: SSDBM, pp. 87-95 (2010)

. Chan, C.Y., Jagadish, H.V,, Tan, K., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in

high dimensional space. In: SIGMOD, pp. 503-514 (2006)

. Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: VLDB, pp. 291-

302 (2007)

. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE, pp.

656-665 (2008)

. Guo, X., Ishikawa, Y., Gao, Y.: Direction-based spatial skylines. In: MobiDE, pp. 73-80

(2010)

. Guo, X., Zheng, B., Ishikawa, Y., Gao, Y.: Direction-based surrounder queries for mobile

recommendations. VLDB J. 20(5), 743-766 (2011)

. Islam, M.S., Liu, C.: Know your customer: computing k-most promising products for targeted

marketing. VLDB J. 25(4), 545-570 (2016)

Islam, M.S., Liu, C., Rahayu, J.W., Anwar, T.: Q+tree: An efficient quad tree based data in-
dexing for parallelizing dynamic and reverse skylines. In: CIKM, pp. 1291-1300 (2016)
Islam, M.S., Rahayu, J.W,, Liu, C., Anwar, T., Stantic, B.: Computing influence of a product
through uncertain reverse skyline. In: SSDBM, pp. 4:1-4:12 (2017)

Islam, M.S., Zhou, R., Liu, C.: On answering why-not questions in reverse skyline queries.
In: ICDE, pp. 973-984 (2013)

Lee, K.C.K,, Lee, W., Leong, H.V.: Nearest surrounder queries. IEEE Trans. Knowl. Data
Eng. 22(10), 14441458 (2010)

Lee, K.C.K., Schiffman, J., Zheng, B., Lee, W., Leong, H.V.: Tracking nearest surrounders in
moving object environments. In: ICPS, pp. 3—12 (2006)

Lee, M.W.,, Son, W., Ahn, H.K., Hwang, S.w.: Spatial skyline queries: exact and approxima-
tion algorithms. Geolnformatica 15(4), 665-697 (2011)

Li, F, Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.: On trip planning queries in
spatial databases. In: SSTD, pp. 273-290 (2005)

Lin, Q., Zhang, Y., Zhang, W., Li, A.: General spatial skyline operator. In: DASFAA, pp.
494-508 (2012)

Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline
operator. In: ICDE, pp. 86-95 (2007)

Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: SIGMOD, pp. 467-478 (2003)

Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Ngrvég, K.: Efficient processing of top-k spa-
tial keyword queries. In: SSTD, pp. 205-222 (2011)

Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB, pp. 751-762 (2006)

Eng. 28(1), 224-237 (2016)

Sohail, A., Cheema, M.A., Taniar, D.: Social-aware spatial top-k and skyline queries. Comput.
J.61(11), 1620-1638 (2018)

Son, W., Lee, M.W., Ahn, H.K., Hwang, S.W.: Spatial skyline queries: An efficient geometric
algorithm. In: SSTD, pp. 247-264. Springer (2009)

Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. IEEE
Trans. Knowl. Data Eng. 24(10), 1889-1903 (2012)

https://www.researchgate.net/publication/331790234

