Skip to main content

Recommendations Based on Collective Intelligence – Case of Customer Segmentation

  • Conference paper
  • First Online:
Book cover Information Technology for Management: Emerging Research and Applications (AITM 2018, ISM 2018)

Abstract

The article discusses the usage and benefits of the recommendation systems based on data mining mechanisms targeting e-commerce industry. In particular the article focuses on the idea of collective clustering to perform customer segmentation. Results of many clustering algorithms in segmentation inspired by the RFM method are presented. The positive business-oriented outcomes of collective clustering are demonstrated on real-live marketing databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Upsaily system was developed by the Unity S.A., Wrocław, in the framework of the Real-Time Omnichannel Marketing (RTOM) project, RPO WD 2014-2020.

  2. 2.

    The Davies-Bouldin index is computed according to the formula: \( DB = 0.5n\,\varSigma \,max\,(\left( {si + sj} \right)/d\left( {ci,cj} \right) \) where n is the number of clusters, the cluster centroids, si and sj mean d distances between the elements of a given cluster and the centroid. The algorithm that generates the smallest value of the DB indicator is considered the best according to the criterion of internal evaluation.

  3. 3.

    The Dunn index is calculated according to the formula: \( D = min(d\left( {i,j} \right)/max\,d^{{\prime }} \left( k \right) \) where d(i, j) means the distance between clusters i i j and d’(k) the measure of distances within the cluster k. The Dunn index focuses on cluster density and distances between cluster. Preferred algorithms according to the Dunn index are those that achieve high index values.

  4. 4.

    The HDBSCAN algorithm, which is an extension of the DBSCAN algorithm, was used. A library available on the GitHub platform was used for this purpose: https://hdbscan.readthedocs.io/en/latest/index.html

  5. 5.

    In brief, the purpose of the PCA method is to find a linear subspace (in our case 2-dimensional) in which the variance after projection remains the largest. However, the PCA method should not easily reject the dimensions with the lowest variance. It builds a new coordinates system in which the remaining values are the most diverse.

References

  1. Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997). https://doi.org/10.1145/245108.245124

    Article  Google Scholar 

  2. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992). https://doi.org/10.1145/138859.138867

    Article  Google Scholar 

  3. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  4. Konstan, J.A., Adomavicius, G.: Toward identification and adoption of best practices in algorithmic recommender systems research. In: Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation, pp. 23–28 (2013). https://doi.org/10.1145/2532508.2532513

  5. Beel, J.: Towards effective research-paper recommender systems and user modeling based on mind maps. Ph.D. thesis. Otto-von-Guericke Universität Magdeburg (2015)

    Google Scholar 

  6. Jannach, D., Zanker, M., Ge, M., Gröning, M.: Recommender systems in computer science and information systems–a landscape of research. In: Proceedings of the 13th International Conference, EC-Web, pp. 76–87 (2012). https://doi.org/10.1007/978-3-642-32273-0_7

  7. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook, pp. 1–35. Springer, Heidelberg (2011). https://doi.org/10.1007/978-0-387-85820-3

    Book  MATH  Google Scholar 

  8. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems – An Introduction. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  9. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, W.G.: Recommender system application developments: a survey. Decis. Support Syst. 74, 12–32 (2015). https://doi.org/10.1016/j.dss.2015.03.008

    Article  Google Scholar 

  10. Said, A., Tikk, D., Shi, Y., Larson, M., Stumpf, K., Cremonesi, P.: Recommender systems evaluation: a 3D benchmark. In: ACM RecSys 2012 Workshop on Recommendation Utility Evaluation: Beyond RMSE, pp. 21–23 (2012)

    Google Scholar 

  11. Acilar, A.M., Arslan, A.: A collaborative filtering method based on artificial immune network. Expert Syst. Appl. 36(4), 8324–8332 (2009). https://doi.org/10.1016/j.eswa.2008.10.029

    Article  Google Scholar 

  12. Cornuejols, A., Wemmert, C., Gançarski, P., Bennani, Y.: Collaborative clustering: why, when, what and how. Inf. Fusion 39, 81–95 (2017). https://doi.org/10.1016/j.inffus.2017.04.008

    Article  Google Scholar 

  13. Kashef, R., Kamel, M.S.: Cooperative clustering. Pattern Recognit. 43(6), 2315–2329 (2010)

    Article  Google Scholar 

  14. Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience user modeling user-adaptation. User Interact. 22, 101–123 (2012). https://doi.org/10.1007/s11257-011-9112-x

    Article  Google Scholar 

  15. Carmagnola, F., Cena, F., Gena, C.: User model interoperability: a survey. User Model. User-Adapt. User Interact. 21(3), 285–331 (2011). https://doi.org/10.1007/s11257-011-9097-5

    Article  Google Scholar 

  16. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002). https://doi.org/10.1023/A:1021240730564

    Article  MATH  Google Scholar 

  17. Kobiela, E.: Intelligent recommendation systems (pol. Inteligentne systemy rekomendacyjne). Network Magazyn (2011). http://www.networkmagazyn.pl/inteligentne-systemy-rekomendacji

  18. Gemius 2017: The latest data on Polish e-commerce is now available (pol. Najnowsze dane o polskim e-commerce już dostępne). https://www.gemius.pl/wszystkie-artykuly-aktualnosci/najnowsze-dane-Polish-of-ecommerce-already-dostepne.html

  19. Nazemoff, V.: Customer intelligence. In: The Four Intelligences of the Business Mind. Apress, Berkeley (2014). https://doi.org/10.1007/978-1-4302-6164-3_3

  20. Chorianopoulos, A.: Effective CRM Using Predictive Analytics. Wiley, Hoboken (2016). https://doi.org/10.1002/9781119011583

    Book  Google Scholar 

  21. Gordon, S., Linoff, M., Berry, J.A.: Data Mining Techniques for Marketing, Sales, and Customer Relationship. Wiley, Hoboken (2011)

    Google Scholar 

  22. Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  23. Jordan, M.I., Mitchell, T.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415

    Article  MathSciNet  MATH  Google Scholar 

  24. Pondel, M., Korczak, J., A view on the methodology of analysis and exploration of marketing data. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1135–1143. IEEE (2017). https://doi.org/10.15439/2017F442

  25. Pondel, M., Korczak, J.: Collective clustering of marketing data-recommendation system Upsaily. In: 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 801–810. IEEE (2018). https://doi.org/10.15439/2018F217

  26. Aggarval, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. Chapman & Hall/CRC, London (2013)

    Book  Google Scholar 

  27. Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. SIAM Series. SIAM, Philadelphia (2007). https://doi.org/10.1137/1.9780898718348

    Book  MATH  Google Scholar 

  28. Quinlan, J.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996). https://doi.org/10.1613/jair.279

    Article  MATH  Google Scholar 

  29. Wemmert, C., Gancarski, P., Korczak, J.: A collaborative approach to combine multiple learning methods. Int. J. Artif. Intell. Tools, World Sci. 9(1), 59–78 (2000). https://doi.org/10.1142/S0218213000000069

    Article  Google Scholar 

  30. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002). https://doi.org/10.1162/153244303321897735

    Article  MathSciNet  MATH  Google Scholar 

  31. Ayad, H., Kamel, M.S.: Cumulative voting consensus method for partitions with variable number of clusters. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 160–173 (2008). https://doi.org/10.1109/TPAMI.2007.1138

    Article  Google Scholar 

  32. Nguyen, N., Caruana, R.: Consensus clusterings. In: International Conference on Data Mining, IEEE Computer Society, pp. 607–612 (2007). https://doi.org/10.1109/ICDM.2007.73

  33. Pedrycz, W.: Collaborative and knowledge-based fuzzy clustering. Int. J. Innov. Comput. Inf. Control. 1(3), 1–12 (2007)

    MATH  Google Scholar 

  34. Faceli, K., de Carvalho, A.C.P.L.F., de Souto, M.C.P.: Multi-objective clustering ensemble with prior knowledge. In: Sagot, M.-F., Walter, M.E.M.T. (eds.) BSB 2007. LNCS, vol. 4643, pp. 34–45. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73731-5_4

    Chapter  Google Scholar 

  35. Law, M.H., Topchy, A., Jain, A.K.: Multiobjective data clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 424–430 (2004). https://doi.org/10.1109/CVPR.2004.1315194

  36. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering with background knowledge. In: International Conference on Machine Learning, pp. 557–584 (2001)

    Google Scholar 

  37. Belarte, B., Wemmert, C., Forestier, G., Grizonnet, M., Weber, C.: Learning fuzzy rules to characterize objects of interest from remote sensing images. In: 2013 IEEE Geoscience and Remote Sensing Symposium (IGARSS), pp. 2986–2989 (2013). https://doi.org/10.1109/IGARSS.2013.6723453

  38. Guo, H.X., Zhu, K.J., Gao, S.W., Liu, T.: An improved genetic k-means algorithm for optimal clustering. In: Conference on Data Mining Workshops, ICDM Workshops, pp. 793–797. IEEE (2006). https://doi.org/10.1109/ICDMW.2006.30

  39. Grira, N., Crucianu, M., Boujemaa, N.: Active semi-supervised fuzzy clustering. Pattern Recognit. 41(5), 1851–1861 (2008). https://doi.org/10.1016/j.patcog.2007.10.004

    Article  MATH  Google Scholar 

  40. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 11. ACM (2004). https://doi.org/10.1145/1015330.1015360

  41. Gancarski, P., Cornueejols, A., Wemmert, C., Bennani, Y.: Clustering collaboratif: Principes et mise en oeuvre. In: Proceedings of BDA 2017, Nancy (2017)

    Google Scholar 

  42. Linoff, G.S.: Data Analysis Using SQL and Excel. Wiley, Hoboken (2015)

    Book  Google Scholar 

  43. Ghodsi, A.: Dimensionality reduction a short tutorial, vol. 37, p. 38. University of Waterloo (2006)

    Google Scholar 

  44. McInnes, L., Healy, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. Preprint arXiv:1802.03426 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maciej Pondel or Jerzy Korczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pondel, M., Korczak, J. (2019). Recommendations Based on Collective Intelligence – Case of Customer Segmentation. In: Ziemba, E. (eds) Information Technology for Management: Emerging Research and Applications. AITM ISM 2018 2018. Lecture Notes in Business Information Processing, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-030-15154-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15154-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15153-9

  • Online ISBN: 978-3-030-15154-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics