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Abstract. Evaluation of security margins after a side-channel attack
is an important step of side-channel resistance evaluation. The security
margin indicates the brute force effort needed to recover the key given the
leakages. In the recent years, several solutions for key rank estimation
algorithms have been proposed. All these solutions give an interesting
trade-off between the tightness of the result and the time complexity for
symmetric key. Unfortunately, none of them has a linear complexity in
the number of subkeys, hence these solutions are slow for large (asym-
metric) keys. In this paper, we present a solution to obtain a key rank
estimation algorithm with a reasonable trade-off between the efficiency
and the tightness that is suitable for large keys. Moreover, by applying
backtracking we obtain a parallel key enumeration algorithm.

1 Introduction

Side-channel attacks are powerful attacks against cryptographic implementa-
tions. To perform a side-channel attack, an attacker needs to be able to measure
some physical properties (e.g. power consumption, electromagnetic radiation) of
the device while it computes some key dependent operations. With this addi-
tional information, some attacks can be performed against cryptographic imple-
mentations. Hence, cryptographic algorithms required secure implementations.

To evaluate the security margin, evaluation labs generally launch some pop-
ular attacks to evaluate if an adversary can break an implementation by per-
forming, for example, a key recovery attack. This approach is adapted since
the leakage of an implementation dependents on the device. Thus, the security
obtained by an implementation is highly dependent on the underlying device.

Most of state of the art side-channel attacks follow a divide-and-conquer
strategy, where the master key is split into several pieces, called subkeys. The
attacker/evaluator mounts an independent attack for each of these subkeys. He
then needs to combine the different results of the attacks. A security evaluation
only based on a success or failure of a key recovery attack is limited by the
computational power of the evaluator. To get rid of this limitation a solution is
to compute the rank of the key instead of performing a key recovery attack. The
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rank corresponds to the number of keys needed to be tested before recovering the
actual key. Recently, several papers studied how to evaluate the security by eval-
uating the computational power required after a side-channel attack [1,8,11,15].
These papers compute an estimation of the rank of the key after a side-channel
attack, without being limited by the evaluator computational power. All these
papers focus on symmetric key size. In [8] the authors managed to evaluate ranks
for 1024-bit keys, but for larger keys, this solution could have some limitations.

Our contributions. We study the cost of the solution of Glowacz et al. for large
keys. Next, we present a variation of this key rank estimation algorithm. This
variation allows us to obtain a linear complexity of the algorithm in the number
of subkeys. We then derive some tighter bound for our construction. These tight
bounds allow us to have an efficient and tight solution for key rank estimation
for large keys (size greater than 1024 bits). Finally, by applying a similar idea
as Poussier et al. [13], we propose a new key enumeration algorithm.

2 Background

2.1 Side-channel attacks and notations

For the rank estimation/key enumeration problems, the details on the divide-
and-conquer attack are not necessary. We just need to specify the output of
the attack. Let us assume that the attacker targets a η-bit master key. An
adversary using a divide-and-conquer strategy will split this key into ν sub-
keys of (for simplicity equally sized) κ bits of subkey. For each subkey ki
the attacker will obtain a list of probability for each possible value of the key
Li = {Pr[ki = 0|SCI], . . . ,Pr[ki = 2κ − 1|SCI]}, where SCI stands for the side-
channel information the adversary obtained. Divide-and-conquer strategy is use-
ful as ν × 2κ is smaller than 2η. Note that if the adversary scores instead of
probability he could either use a Bayesian extension [14] or use direct results [4].

2.2 Key enumeration algorithms

From the result of an attack, either all the correct subkeys have the highest
probability of the list of the candidate subkeys or the attacker need to test the
most likely keys. Some solution exists to recombine this information in a smart
way [2,6,10,11,13,14]. All these algorithms have been tested in a symmetric key
setting and provide efficient solution.

The algorithms proposed in [2,11,13] can be separate in two phases: a con-
struction phase (that is similar to key rank estimation) and a backtracking part
that enumerates the keys. For symmetric keys setting, the first part (construc-
tion) is negligible in comparison to the second (backtracking).



2.3 Rank estimation algorithms

A rank estimation algorithm is a tool that allows an evaluator to estimate the
brute force an attacker need to perform a successful attack, i.e. how many keys
the attacker needs to test in the recombination phase before she recovers the
actual key (the key is known by the evaluator). As we want to evaluate security
against a smart adversary we should assume that she can enumerate the keys
from the most probable one to the least probable one (but still in its computa-
tional power limits).

Definition 1 (Rank of the key). The rank of the key k after a side-channel
attack is defined as the number of keys that have a higher probability than k.

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k|SCI]}.
Where # stands for the cardinality of the set.

Definition 2 (Tightness). The tightness of an estimation is the logarithm of

the ratio between the upper and lower bound log2

(
rank upper bound

rank lower bound

)
.

In the rest of this paper, the probability of a key is equal to the product of
the probabilities of its subkeys. Hence, we suppose that the subkeys probabilities
are independent, and so the different attacks.

The main advantage of using a key rank estimation algorithm is that an
evaluator does not need to perform the brute force search to estimate the costs
of such a search. In the past few years, several solutions have been proposed
to solve this problem [1,8,11,15]. Efficient rank estimation algorithms [1,8,11]
share the same step that introduces error: they map the probabilities to integers
(see [12] for a discussion on the errors introduced by algorithms that calculate
security margins). Using this simplification they can estimate the rank of the
key quite efficiently, with bounded error due to some truncation that appears
during the conversion from real (float) to integer. Hence, these algorithms can-
not compute the rank, but an upper bound (rank upper bound) and a lower
bound (rank lower bound) of the rank. These rank estimation algorithms are
based on samples, i.e.they use result of an attack and calculate bounds on the
rank. To obtain some indication of the security level of the device several exper-
iments attacks are launched and results could be displayed in a security graph
as proposed in [15].

Some other solutions exist to evaluate the security of a device that can be
faster and adaptable for large keys [7,16]. These solutions are based on metrics,
i.e. do not use directly result of an attack, but use results of several attacks to
compute a metric e.g. the success rate. However, solutions based on metric could
misestimate the actual computational power of an attack, as pointed out in [12].

2.4 The histogram solution

Since our solution is based on the Glowacz et al. solution [8], we give some more
highlight on this solution. In the rest of the paper, we refer to this solution as
FSE’15. The different steps of this algorithm can be summarized as follow:



1. from multiplicative relation to additive relation: since the subkeys are inde-
pendent we have Pr[k1, k2|SCI] = Pr[k1|SCI]× Pr[k2|SCI]. By using loga-
rithm, we have log(Pr[k1, k2|SCI]) = log(Pr[k1|SCI]) + log(Pr[k2|SCI]).

2. from reals to integers: in the FSE’15 solution, this step is done by casting the
results of the side-channel attacks into histograms. For each subkey a his-
togram is built, the histograms should have the same bin size. The bin height
corresponds to the number of candidate subkeys that have a log probability
included between the limits of the bin.

3. convolution of histograms: the convolution of histograms gives us the dis-
tribution of the combination of the probabilities of different combination of
subkeys. Remark the height of i-th bin of H3 that is the result of the convo-
lution of H1 and H2 is H3(i) =

∑
j H1(j)×H2(i− j). This is the number of

couples of subkey candidates that have the sum of the estimated sum of log
probabilities that correspond to the center of the bin i.

4. calculate bound : This is done by summing the bins that represent a higher
log probability than the bin of the key’s log probability (± the error bounds).
Hence, having tight error bounds allow obtaining tighter results.

In listing 1 we give a simplified version of the code of the two last steps.

Listing 1. Matlab implementation of FSE’15 solution.

1f unc t i on [ mini , maxi ] = rank ( hi , b )
2% Inputs :
3%hi : l i s t o f histogram sco r e f o r each subkey ( h i ( subkey , : ) )
4%b : bin index o f the l og p r o b a b i l i t y o f the ac tua l key
5%Outputs Mini the minimum rank o f the key
6% Maxi the maximum rank o f the key
7[ dim ,˜ ]= s i z e ( h i ) ;
8H=conv ( h i ( 1 , : ) , h i ( 2 , : ) ) ;
9f o r i =3:dim
10H=conv (H, h i ( i , : ) ) ;
11end
12mini=sum(H(b+(dim/2) +1: l ength (H) ) ) ;
13maxi=sum(H(b−dim /2 : l ength (H) ) ) ;
14end

Since the histograms put every log probabilities in the bin center some error
could appear. In [8] the authors show that the maximum distance in numbers
of bin between a bin of a sum of log probabilities and the bin where the FSE

algorithm could put it is
ν

2
. That is why the minimum and maximum are shifted

by such a value.

Example 1. Let us assume we have two subkeys k1, k2 of 3 bits. With the prob-
abilities given in Table 1. As our histograms will use the logarithm of the prob-
abilities (to have an additive relation), we also provide the logarithm values and
also the key candidates’ bin.



Table 1. Probabilities of subkeys candidates and their logarithm and bin values.

k1 k2
Candidate Pr log bin Pr log bin

0 0.6643 -0.5901 1 0.0012 -9.7027 3
1 0.2588 -1.9501 1 0.0011 -9.8283 3
2 0.0313 -4.9977 2 0.3588 -1.4787 1
3 0.0412 -4.6012 2 0.0713 -3.8100 1
4 0.0001 -13.2877 4 0.5643 -0.8255 1
5 0.0020 -8.9658 3 0.0012 -9.7027 3
6 0.0013 -9.5873 3 0.00005 -14.2877 4
7 0.0010 -9.9658 3 0.00205 -8.9302 3

We construct the histograms as follows. The bin 1 corresponds to the number
of keys with logarithm probabilities between -16 and -12, the bin 2 corresponds
to the number of keys with logarithm probabilities between -12 and -8, the bin 3
corresponds to the number of keys with logarithm probabilities between -8 and
-4 and the bin 4 corresponds to the number of key with logarithm probabilities
between -4 and 0. The histograms are displayed in Figure 1. H1 is the histogram
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Fig. 1. The histograms for the two subkeys and the convolution result.

for the subkey candidates of k1. The sum of the bins gives us 8 that is the number
of subkey candidates. H2 is the histogram for the subkey candidates of k2.

Then by performing the convolution we have the distribution of all possible
couple for the subkeys (k1, k2). In the histogram of Figure 1, the bin 1 should
correspond to the number of couples of candidate keys with logarithm probabil-
ities between -30 and -26, since we only look at the center of the bin some error
could appear here.

Part 3 (for loop line 9 in listing 1) of such an algorithm is the most expensive
part . We need to perform nb subkeys− 1 convolution, each convolution having
a cost in nlog(n) when FFT is used. Remark this n is the size of the outputted
histogram (and thus on the number of convolutions already performed), that



means the cost of convolution became more and more expensive as the size of
the histogram H grows. It comes out that the cost of the rank estimation of
Glowacz et al. grows not linearly with the number of subkeys. This observation
is validated by experiments in Section 4.

During the computation, we need to use large numbers (a bin can contain a
number between 0 and 2η). Hence, to avoid precision error due to large number
we need to use large integer library and/or the Chinese remainder theorem as
proposed in Appendix B of [8].

Another limitation for large keys is the size of the histogram that will grow
linearly in the number of subkeys. After the convolution i-th the size of the
histogram H is of size (i − 1) × dim, the value stored in that table could go
up to 2η. This could be expensive for large key and high precision. The FSE’15
solution needs to store the last histogram.

Example 2. That means for histograms with 216 bins and for a key of 256 sub-
keys, we need to store a table of ' 224 values. These values are integers of at
most 2048 bits (if subkeys are bytes). That means around 4GB.

If the size of the key doubles the memory required double. Remark for the
enumeration all intermediate histograms need to be stored to apply the back-
tracking solution this could require some large amount of memory.

3 Scalable rank estimation algorithm

The main idea of our solution is to keep histogram with a constant number of
bins. This is achieved by batching two by two the bins of the convolution’s result
histograms (line 15 in listing 2).

Listing 2. Matlab implementation of our solution.

1f unc t i on [ mini , maxi ] = rank ( hi , b )
2% Inputs / output same as L i s t i n g 1
3[ dim ,˜ ]= s i z e ( h i ) ;
4H2=c e l l ( l og2 (dim ) , dim/2) ;
5f o r i =2:2 : dim
6H=conv ( h i ( i −1 , : ) , h i ( i , : ) ) ;
7H2{1 , i /2}=[H( 2 : 2 : l ength (H) ) ,0]+H( 1 : 2 : l ength (H) ) ;
8end
9dim=dim /2 ;
10j =1;
11whi le dim>1
12j=j +1;
13f o r i =2:2 : dim
14H=conv (H2{ j −1, i −1} ,H2{ j −1, i }) ;
15H2{ j , i /2}=[H( 2 : 2 : l ength (H) ) ,0]+H( 1 : 2 : l ength (H) ) ;
16end
17dim=dim /2 ;
18end
19mini=sum(H2{ j , 1} ( b+e r r o r ( dim) +1: l ength (H2{ j , 1} ) ) ) ;



20maxi=sum(H2{ j , 1} ( b+e r r o r ( dim) : l ength (H2{ j , 1} ) ) ) ;
21end

Where the error function is a function that gives the approximation error
due to our casting and batching. This function and the values outputted are
discussed in Subsection 3.3.

As for the FSE’15 solution we perform convolution on histograms and obtain
the histogram H, but after this step we batch bins in pairs and obtain the
histogram H2. The i-th bin of H2 is equal to the sum of the 2i-th and the 2i+1-
th bins of H, H2(i) = H(2i) +H(2i+ 1). Doing so H2 has the same number of
bins as the initial histogram. But then the bin size of the histogram after the
batching is twice as large as the bin size of the loop input histograms.

For rank estimation, we need to perform convolution between histogram with
equally sized bins. By performing the batching we increase the width of the
bins. To solve the problem we use a recursive approach, we do convolutions of
histograms two by two, batch and start a new level of convolutions. Hence we
perform convolution in a tree like structure, see the right part of Figure 2. The
tree like structure can be used without batching to have similar result as FSE’15.
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Fig. 2. Representation of the FSE’15 solution (left) and ours (right).

Example 3. In our example 1, the batching step outputs the histogram in fig-
ure 3. The batching step merge bin 2 by 2. That means the first bin in the new
histogram corresponds to the sum of the bins 1 and 2 from the result of the
convolution histogram of figure 1.

3.1 On the time complexity

Our algorithm performs the same number of convolutions as FSE’15. But in our
solution, the size (i.e. the number of bins) of the histogram stays the same, the
bin size increase.

While for the FSE’15 solution the size of Hi histograms grows, size(Hi) =
((i + 1) × nb bin init) − i, the size of the H2 histograms in our solution stay
the same as the initial histograms, i.e. size(H2) = nb bin init. That means that
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Fig. 3. The batched result.

convolution in level 1 of the tree (right part of figure 2) should require similar
computation as the convolution in the last level. Thus, we expect for our solution
to have a time that grows linearly with the number of subkeys. This is verified
by experiments in Subsection 4.1.

3.2 On memory complexity

As we can see on the figure 2 our method is a tree exploration. That means we
can explore it in breadth first or in depth first search.

In the case of a breadth first search, the most expensive step we have to store
is the batched histograms after the first step of convolutions, in that case, we

need to store
ν

2
tables of nb bin init values. If the size of the key doubles the

memory required double.

Example 4. For the same values as example 2, 216 bins and 256 subkeys, we need
to store 223 values. That is around 2 GB.

In the case of depth first search, we need to store at most one batched his-
togram per level (log2 ν). If the size of the key doubles the memory required
increase by one histogram.

Example 5. For the same values as example 2, we need to store 219 values. That
is around 128 MB.

For simplicity we describe in listing 2 the breadth first search. Both breadth
and deep first technique have similar time, the choice of one over the other is
then based on memory available.

3.3 Bounded error

The tight bounds we obtain for our method lead to efficient tight results. The
error is introduced when we cast real numbers into integers as for FSE’15. Our
solution also introduces error when the batching step is performed.



For the rounding error that appears when we transform real numbers into
integers. For every log probability of a subkey candidate k = i and for histogram
of bin width 2ε there exist a bin bi of center ci such that ci − ε ≤ log(Pr[k =
i]) ≤ ci + ε.

If we look at the combined candidate (k1 = i, k2 = j) we know that for the
initial histogram we have:

ci − ε ≤ log(Pr[k1 = i]) ≤ ci + ε

cj − ε ≤ log(Pr[k2 = j]) ≤ cj + ε.

By summing the inequalities we obtain:

ci + cj − 2ε ≤ log(Pr[k1 = i]) + log(Pr[k2 = j]) ≤ ci + cj + 2ε.

The convolution will consider that the couple (k1 = i, k2 = j) has log prob-
ability ci + cj . Hence the distance between the real log probability and the log
probability considered by the convolution is 2ε. If we add ν of such inequalities
the distance between the real log probability and its bin is bounded by νε. That
is the bound of the FSE’15 method.

In our case we have also to consider the batching step. Remark when we batch

the bins of width w center ci, ci+1 (resp. ci−1, ci), the new center is
ci + ci+1

2
=

ci +
w

2
(resp.

ci−1 + ci
2

= ci −+
w

2
). That means we have the inequality:

ci −
w

2
≤ batch(ci) ≤ ci −

w

2
.

Putting the two errors for each level in our tree we double the error of the
histograms inputs and add an error of half bin width of histogram inputs. For
the first level, we will have:

batch(ci + cj)− 3ε ≤ ci + cj − 2ε ≤ log(Pr[k1 = i]) + log(Pr[k2 = j])

≤ ci + cj + 2ε ≤ batch(ci + cj) + 3ε.

By iterating the error propagation we obtain error for our method. Remark
the error can be, more efficiently, computed by the following formula if the input
histograms at the first level have bin width 2ε:

error = νε+ dlog2(ν)eν
2
ε.

Remark that the final histogram has bin width of 2ν+1ε
In FSE’15 the error was given as a number of bin, in our case doing so we

will have overestimated margins. Calculate the lower and upper bins from the
log probability of the key ± error give tighter margins.

As for FSE’15 if we double the number of bins we reduce by two the error.



3.4 Non power of 2 cases

If the number of subkeys is not a power of two our first convolution step (line 5
in listing 2) should be adapted.

During the first step of convolutions, we perform a reduced number of con-
volutions such that at the end of this step the number of histograms is a power
of 2. To keep the histograms with the same bin size we need to perform batching
on all histograms, even the ones that do not go to the first convolution loop. We
refer to longer version of this paper for more details.1

4 Experiments

We compare the efficiency of different approaches of key ranking based on his-
tograms (i.e. FSE’15 and our method) in terms of time efficiency and precision.

In all our experiment we consider simulations. We target the memory loading
of the key (or subkeys). The memory load target seems to fit the assumption of
independence of subkeys for large keys. Note that such attacks have been used
for attacks against AVR XMEGA [5]. These attacks do not use the structure of
the cipher so can be adapted to asymmetric key implementations at a cost of
more computation (linear in the key size). We assume that the attacker was able
to perfectly recovered the leakage function.

For our experiments, we have a set of parameters that we modify that we
detailed hereafter.

– The number of subkeys. The number of subkeys is the principal parameters
we want to compare.

– The precision. The precision is an important point of comparison for rank
estimation algorithms. In our case, we compare histogram based solution the
precision is the number of bins.

– The leakage function. As we target the memory load of a subkey we can
observe only one output of the leakage function L. The only observation
we get is L(k) + N , where k is the subkey and N is some noise. If we
perform several measurements for the same subkey we will observe the same
deterministic part of the leakage. Hence, if L(k1) = L(k2), we will obtain the
same probability for k1 and k2. Such a property will impact the tightness
result of any key rank algorithm that targets such values.

– The noise. We consider white Gaussian noise with different variance noise.
– The size of the subkeys. For our experiments, we target 8-bit subkeys.

4.1 Same precision

We compare in term of efficiency our method versus the FSE method. In this
experiment we look at the tightness and time of our method with 216 bins per
histogram at the beginning, FSE’15 with the same amount of bins and FSE’15

1 https://eprint.iacr.org/2018/175
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with less bins

(
216

ν

)
such that the final histogram have a similar amount of

bins as our method. The choice of 216 bins per histogram at the beginning is
motivated by the fact this gives quite tight bound in an efficient manner for
FSE’15.
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Fig. 4. Execution time (left) and tightness of the bound (right) of Matlab im-
plementations of the FSE’15 solution and ours for different sizes of keys (16 bits
of precision) and an SNR of 8.

On the graph, we can see that the FSE’15 solution with a constant number
of bins (216) have an execution time that grows faster than linearly, but it is
the solution that offers the tightest bound. However, if we use FSE’15 with the
same number of bins for the final histogram the solution is quite efficient but
the tightness explodes for large keys. Our method seems to have a linear time
complexity and a linear increase of the tightness in the size of the key.

4.2 Similar tightness

We compare our method to the FSE’15 method to obtain similar tightness. We
look at two levels of tightness 1 bit and 0.3 bit. To obtain similar tightness when
the size of the key increase we need to increase the number of bins of the initial
histograms. The results are plotted in Figure 5.

The first observation we can make is that the tighter we want the rank
estimation, the smallest is the ratio between the time gap between our method
and FSE’15. Secondly, since we need to increase the number of bins of the initial
histograms the time complexity grows faster than linearly even for our method.
However, for a large number of subkeys our solution more efficient than the
FSE’15 solution.

4.3 NTL implementation

Matlab implementation of the solution has some limitations mainly due to the
fact that large integers are stored in doubles. That means that bins cannot be
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Fig. 5. Execution time (left) and tightness of the bound (right) of Matlab im-
plementations of the FSE’15 solution and ours for similar tightness.

higher than 21024. Thus for large keys (>1024-bit), the implementation could
lead to an incorrect result. To solve this problem Glowacz et al. [8] suggest to
use Chinese remainder theorem.

To override these issues we implement our solution using a big integer li-
brary: the NTL library. We look at histograms starting with 212 and perform
the convolution of : 16, 32, 64, 128, 256, 512 and 1024 histograms. For the clas-
sical FSE’15 method for the 128 convolutions and an initial number of bins 212

we get an error message saying that histograms where too large (the number of
bins) to perform the convolution. Our C implementation allows to obtain rank
for very large keys (up to 1024 subkeys in less than 15 seconds).

4.4 Comparison with CHES 2017

At CHES 2017 Choudary and Popescu present an “impressively fast, scalable
and tight security evaluation tools” [3]. Note that their tool does not calculate
the rank of the key but the expected value of the rank. As pointed out in [9] it
is not clear how to evaluate the power computation required to recover the key
from the expected value of the rank. This is mainly due to the distribution of the
rank that is not easy to model. However, we want to compare our method, the
FSE’15 method and the CHES 2017 method in terms of efficiency/tightness. As
the CHES 2017 do not offer parameters to tighten the bounds we play with the
number of bins for FSE and our method to have similar tightness. The results
are plotted in Figure 6.

We can see that indeed the CHES’17 solution is quite efficient. In the same
time, for such a tightness all solutions run in less than 100ms for 128 subkeys.
For such bounds, it seems that the rank computation’s time is not the bottleneck
of an evaluation.
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Fig. 6. Execution time (left) and tightness of the bound (right) of Matlab im-
plementations of the FSE’15 solution and ours for similar tightness as CHES’17.

5 Key enumeration

We can apply similar idea as the backtracking used in [13]. Our technique speed
up the construction phase of a solution like [13]. In general, this step is negligible
for key enumeration algorithm. We refer to longer version of this paper for more
details.2 However, our enumeration algorithm has an advantage when memory
needed to store histograms is too large.

6 Conclusion

We present a trick to reduce the cost of rank estimation for a large number
of subkeys based on the rank estimation of [8]. It can be applied to evaluate
security against side-channel of cryptographic implementation that uses large
keys. Our solution has the advantage to have a linear complexity in the number
of subkeys. Our method allows to estimate efficiently rank of the key thanks to
the tight bounds we manage to evaluate. Finally, our algorithm could be used as a
construction phase for an enumeration algorithm. This algorithm could be useful
when the number of subkeys if large and thus classical enumeration algorithm
required a large amount of memory. Finally, our error bound estimation could be
applied to other cases, in particular we can look at not equally sized histograms.

Acknowledgments. I thank the anonymous reviewers and Mathieu Carbone, Ro-
main Poussier and François-Xavier Standaert for the improvements pointed out.
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