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Abstract. Tensor factorization has become an increasingly popular ap-
proach to knowledge graph completion (KGC), which is the task of auto-
matically predicting missing facts in a knowledge graph. However, even
with a simple model like CANDECOMP/PARAFAC (CP) tensor decom-
position, KGC on existing knowledge graphs is impractical in resource-
limited environments, as a large amount of memory is required to store
parameters represented as 32-bit or 64-bit floating point numbers. This
limitation is expected to become more stringent as existing knowledge
graphs, which are already huge, keep steadily growing in scale. To re-
duce the memory requirement, we present a method for binarizing the
parameters of the CP tensor decomposition by introducing a quantiza-
tion function to the optimization problem. This method replaces floating
point–valued parameters with binary ones after training, which drasti-
cally reduces the model size at run time. We investigate the trade-off be-
tween the quality and size of tensor factorization models for several KGC
benchmark datasets. In our experiments, the proposed method success-
fully reduced the model size by more than an order of magnitude while
maintaining the task performance. Moreover, a fast score computation
technique can be developed with bitwise operations.

Keywords: Knowledge graph completion · Tensor factorization · Model
compression.

1 Introduction

Knowledge graphs, such as YAGO [25] and Freebase [2], have proven useful
in many applications such as question answering [3], dialog [17] and recom-
mender [22] systems. A knowledge graph consists of triples (ei, ej , rk), each of
which represents a fact that relation rk holds between subject entity ei and ob-
ject entity ej . Although a typical knowledge graph may have billions of triples,
it is still far from complete. Filling in the missing triples is of importance in
carrying out various inference over knowledge graphs. Knowledge graph comple-

tion (KGC) aims to perform this task automatically.
In recent years, knowledge graph embedding (KGE) has been actively pursued

as a promising approach to KGC. In KGE, entities and relations are embedded
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in vector space, and operations in this space are used for defining a confidence
score (or simply score) function θijk that approximates the truth value of a given
triple (ei, ej , rk). Although a variety of KGE methods [4, 21, 24, 26, 6] have been
proposed, Kazemi and Poole [11] and Lacroix et al. [14] found that a classical
tensor factorization algorithm, known as the CANDECOMP/PARAFAC (CP)
decomposition [10], achieves the state-of-art performances on several benchmark
datasets for KGC.

In CP decomposition of a knowledge graph, the confidence score θijk for a
triple (ei, ej, rk) is calculated simply by ai:(bj: ◦ ck:)

T where ai:, bj:, and ck:

denote the D-dimensional row vectors representing ei, ej , and rk, respectively,
and ◦ is the Hadamard (element-wise) product. In spite of the model’s simplicity,
it needs to maintain (2Ne +Nr) D-dimensional 32-bit or 64-bit valued vectors,
where Ne, and Nr denote the number of entities and relations, respectively. Be-
cause typical knowledge graphs contain enormous number of entities and rela-
tions, this leads to a significant memory requirement. As mentioned in [6], CP
with D = 200 applied to Freebase will require about 66 GB of memory to store
parameters. This large memory consumption poses issues especially when KGC
is conducted on resource-limited devices. Moreover, the size of existing knowl-
edge graphs is still growing rapidly, and a method for shrinking the embedding
vectors is in strong demand.

To address the problem, this paper presents a new CP decomposition algo-
rithm to learn compact knowledge graph embeddings. The basic idea is to intro-
duce a quantization function built into the optimization problem. This function
forces the embedding vectors to be binary, and optimization is done with respect
to the binarized vectors. After training, the binarized embeddings can be used in
place of the original vectors of floating-point numbers, which drastically reduces
the memory footprint of the resulting model.

In addition, the binary vector representation contributes to efficiently com-
puting the dot product by using bitwise operations. This fast computation allows
the proposed model to substantially reduce the amount of time required to com-
pute the confidence scores of triples.

Note that our method only improves the run-time (i.e., predicting missing
triples) memory footprint and speed but not those for training a prediction
model. However, the reduced memory footprint of the produced model enables
KGC to be run on many affordable resource-limited devices (e.g., personal com-
puters). Unlike research-level benchmarks in which one is required to compute
the scores of a small set of test triples, completion of an entire knowledge graph
requires computing the scores of all missing triples in a knowledge graph, whose
number is enormous because knowledge graphs are sparse. Thus, improved mem-
ory footprints and reduced score computation time are of practical importance,
and these are what our proposed model provides.

The quantization technique has been commonly used in the community of
deep neural networks to shrink network components [5, 8]. To the best of our
knowledge, this technique has not been studied in the field of tensor factoriza-
tion. The main contribution of this paper is that we introduce the quantization
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function to a tensor factorization model for the first time. This is also the first
study to investigate the benefits of the quantization for KGC. Our experimental
results on several KGC benchmark datasets showed that the proposed method
reduced the model size nearly 10- to 20-fold compared to the standard CP de-
composition without a decrease in the task performance. Besides, with bitwise
operations, B-CP got a bonus of speed-up in score computation time.

2 Related Work

Approaches to knowledge graph embedding (KGE) can be classified into three
types: models based on bilinear mapping, translation, and neural network-based
transformation.

RESCAL [21] is a bilinear-based KGE method whose score function is formu-
lated as θijk = aT

ei
Brkaej , where aei ,aej ∈ RD are the vector representations of

entities ei and ej , respectively, and matrix Brk ∈ RD×D represents a relation rk.
Although RESCAL is able to output non-symmetric score functions, each rela-
tion matrix Brk holds D2 parameters. This can be problematic both in terms of
overfitting and computational cost. To avoid this problem, several methods have
been proposed recently. DistMult [27] restricts the relation matrix to be diago-
nal, Brk = diag(brk). However, this form of function is necessarily symmetric
in i and j; i.e., θijk = θjik. To reconcile efficiency and expressiveness, Trouillon
et al. (2016) [26] proposed ComplEx, using the complex-valued representations
and Hermitian inner product to define the score function, which unlike DistMult,
can be nonsymmetric in i and j. Hayashi and Shimbo (2017) [9] found that Com-
plEx is equivalent to another state-of-the-art KGE method, holographic embed-
dings (HolE) [19]. ANALOGY [16] is a model that can be view as a hybrid of
ComplEx and DistMult. Manabe et al. (2018) [18] reduced redundant parame-
ters of ComplEx with L1 regularizers. Lacroix et al. (2018) [14] and Kazemi and
Pool (2018) [11] independently showed that CP decomposition (called SimplE
in [11]) achieves a comparable KGC performance to other bilinear methods such
as ComplEx and ANALOGY. To achieve this performance, they introduced an
“inverse” triple (ej , ei, r

−1
k ) to the training data for each existing triple (ei, ej , rk),

where r−1
k denotes the inverse relation of rk.

TransE [4] is the first KGE model based on vector translation. It employs
the principle aei + brk ≈ aej to define a distance-based score function θijk =
−‖aei + brk − aej‖

2. Since TransE was recognized as too limited to model com-
plex properties (e.g., symmetric/reflexive/one-to-many/many-to-one relations)
in knowledge graphs, many extended versions of TransE have been proposed.

Neural-based models, such as NTN [24] and ConvE [6], employ non-linear
functions to define score function, and thus they have a better expressiveness.
Compared to bilinear and translation approaches, however, neural-based models
require more complex operations to compute interactions between a relation and
two entities in vector space.

It should be noted that the binarization technique proposed in this paper
can be applied to other KGE models besides CP decomposition, such as those
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mentioned above. Our choice of CP as the implementation platform only reflects
the fact that it is one of the strongest baseline KGE methods.

Numerous recent publications have studied methods for training quantized
neural networks to compact the models without performance degradation. The
BinaryConnect algorithm [5] is the first study to show that binarized neural net-
works can achieve almost the state-of-the-art results on datasets such as MNIST
and CIFAR-10 [8]. BinaryConnect uses the binarization function Q1(x) to re-
place floating point weights of deep neural networks with binary weights during
the forward and backward propagation. Lam (2018) [15] used the same quantiza-
tion method as BinaryConnect to learn compact word embeddings. To binarize
knowledge graph embeddings, this paper also applied the quantization method
to the CP decomposition algorithm. To the best of our knowledge, this paper is
the first study to examine the benefits of the quantization for KGC.

3 Notation and Preliminaries

We follow the notation and terminology established in [12] for the most part.
These are summarized below mainly for third-order tensors, by which a knowl-
edge graph is represented (see Section 4.1).

Vectors are represented by boldface lowercase letters, e.g., a. Matrices are
represented by boldface capital letters, e.g., A. Third-order tensors are repre-
sented by boldface calligraphic letters, e.g., X .

The ith row of a matrix A is represented by ai:, and the jth column of A
is represented by a:j, or simply as aj . The symbol ◦ represents the Hadamard
product for matrices and also for vectors, and ⊗ represents the outer product.

A third-order tensor X ∈ RI1×I2×I3 is rank one if it can be written as the
outer product of three vectors, i.e., X = a⊗b⊗c. This means that each element
xi1i2i3 of X is the product of the corresponding vector elements:

xi1i2i3 = ai1bi2ci3 for i1 ∈ [I1], i2 ∈ [I2], i3 ∈ [I3],

where [In] denotes the set of natural numbers 1, 2, · · · , In.
The norm of a tensor X ∈ RI1×I2×···×Ik is the square root of the sum of the

squares of all its elements, i.e.,

‖X‖ =

√
∑

i1∈[I1]

∑

i2∈[I2]

· · ·
∑

ik∈[Ik]

x2
i1i2···ik .

For a matrix (or a second-order tensor), this norm is called the Frobenius norm
and is represented by ‖ · ‖F .

4 Tensor Factorization for Knowledge Graphs

4.1 Knowledge Graph Representation

A knowledge graph G is a labeled multigraph (E ,R,F), where E = {e1, . . . , eNe
}

is the set of entities (vertices), R = {r1, . . . , rNr
} is the set of all relation types
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Fig. 1. Illustration of a D-component CP model for a third-order tensor X .

(edge labels), and F ⊂ E×E×R denotes the observed instances of relations over
entities (edges). The presence of an edge, or a triple, (ei, ej, rk) ∈ F represents
the fact that relation rk holds between subject entity ei and object entity ej.

A knowledge graph can be represented as a boolean third order tensor X ∈
{0, 1}Ne×Ne×Nr whose elements are set such as

xijk =

{

1 if (ei, ej, rk) ∈ F

0 otherwise
.

KGC is concerned with incomplete knowledge graphs, i.e., F ( F∗, where F∗ ⊂
E × E × R is the unobservable set of ground truth facts (and a superset of F).
KGE has been recognized as a promising approach to predicting the truth value
of unknown triples in F∗ \ F . KGE can be generally formulated as the tensor
factorization problem and defines a score function θijk using the latent vectors
of entities and relations.

4.2 CP Decomposition

CP decomposition [10] factorizes a given tensor as a linear combination ofD rank-
one tensors. For a third-order tensor X ∈ RNe×Ne×Nr , its CP decomposition is

X ≈
∑

d∈[D]

ad ⊗ bd ⊗ cd ,

where ad ∈ RNe , bd ∈ RNe and cd ∈ RNr . Figure 1 illustrates CP for third-
order tensors, which demonstrates how we can formulate knowledge graphs. The
elements xijk of X can be written as

xijk ≈ ai:(bj: ◦ ck:)
T =

∑

d∈[D]

aidbjdckd for i, j ∈ [Ne], k ∈ [Nr].

A factor matrix refers to a matrix composed of vectors from the rank one com-
ponents. We use A = [a1 a2 · · · aD] to denote the factor matrix, and likewise
B, C. Note that ai:, bj: and ck: represent the D-dimensional embedding vectors
of subject ei, object ej, and relation rk, respectively.
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4.3 Logistic Regression

Following literature [20], we formulate a logistic regression model for solving
the CP decomposition problem. This model considers CP decomposition from a
probabilistic viewpoint. We regard xijk as a random variable and compute the
maximum a posteriori (MAP) estimates ofA, B, andC for the joint distribution

p(X |A,B,C) =
∏

i∈[Ne]

∏

j∈[Ne]

∏

k∈[Nr]

p(xijk|θijk).

We define the score function θijk = ai:(bj: ◦ ck:)
T that represents the CP decom-

position model’s confidence that a triple (ei, ej, rk) is a fact; i.e., that it must
be present in the knowledge graph. By assuming that xijk follows the Bernoulli
distribution, xijk ∼ Bernoulli(σ(θijk)), the posterior probability is defined as the
following equation

p(xijk|θijk) =

{
σ(θijk) if xijk = 1
1− σ(θijk) if xijk = 0

,

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function.
Furthermore, we minimize the negative log-likelihood of the MAP estimates,

such that the general form of the objective function to optimize is

E =
∑

i∈[Ne]

∑

j∈[Ne]

∑

k∈[Nr ]

Eijk ,

where

Eijk = −xijk log σ(θijk) + (xijk − 1) log(1− σ(θijk))
︸ ︷︷ ︸

ℓijk

+ λA‖ai:‖
2 + λB‖bj:‖

2 + λC‖ck:‖
2

︸ ︷︷ ︸

L2 regularizer

.

ℓijk represents the logistic loss function for a triple (ei, ej , rk). While most knowl-
edge graphs contain only positive examples, negative examples (false facts) are
needed to optimize the objective function. However, if all unknown triples are
treated as negative samples, calculating the loss function requires a prohibitive
amount of time. To approximately minimize the objective function, following
previous studies, we used negative sampling in our experiments.

The objective function is minimized with an online learning method based on
stochastic gradient descent (SGD). For each training example, SGD iteratively

updates parameters by ai: ← ai: − η
∂Eijk

∂ai:
, bj: ← bj: − η

∂Eijk

∂bj:
, and ck: ←

ck:−η
∂Eijk

∂ck:
with a learning rate η. The partial gradient of the objective function

with respect to ai: is

∂Eijk

∂ai:
= −xijk exp (−θijk)σ(θijk)bj: ◦ ck: + (1− xijk) σ(θijk)bj: ◦ ck: + 2λAai:.

Those with respect to bj: and ck: can be calculated in the same manner.
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5 Binarized CP Decomposition

We propose a binarized CP decomposition algorithm to make CP factor matrices
A, B and C binary, i.e., the elements of these matrices are constrained to only
two possible values.

In this algorithm, we formulate the score function θ
(b)
ijk =

∑

d∈[D] a
(b)
id b

(b)
jd c

(b)
kd ,

where a
(b)
id = Q∆(aid), b

(b)
jd = Q∆(bjd), c

(b)
kd = Q∆(ckd) are obtained by binarizing

aid, bjd, ckd through the following quantization function

x(b) = Q∆(x) =

{

∆ if x ≥ 0

−∆ if x < 0
,

where ∆ is a positive constant value. We extend the binarization function to

vectors in a natural way: x(b) = Q∆(x) whose ith element x
(b)
i is Q∆(xi).

Using the new score function, we reformulate the loss function defined in
Section 4.3 as follows

ℓ
(b)
ijk = −xijk log σ(θ

(b)
ijk) + (xijk − 1) log(1 − σ(θ

(b)
ijk)).

To train the binarized CP decomposition model, we optimize the same objective
function E as in Section 4.3 except using the binarized loss function given above.
We also employ the SGD algorithm to minimize the objective function. One issue
here is that the parameters cannot be updated properly since the gradients of
Q∆ are zero almost everywhere. To solve the issue, we simply use an identity
matrix as the surrogate for the derivative of Q∆:

∂Q∆(x)

∂x
≈ I.

The simple trick enables us to calculate the partial gradient of the objective
function with respect to ai: through the chain rule:

∂ℓ
(b)
ijk

∂ai:
=

∂Q∆(ai:)

∂ai:

∂ℓ
(b)
ijk

∂Q∆(ai:)
≈ I

∂ℓ
(b)
ijk

∂Q∆(ai:)
=

∂ℓ
(b)
ijk

∂a
(b)
i:

.

This strategy is known as Hinton’s straight-through estimator [1] and has been
developed in the community of deep neural networks to quantize network com-
ponents [5, 8]. Using this trick, we finally obtain the partial gradient as follows:

∂Eijk

∂ai:
= −xijk exp

(

−θ
(b)
ijk

)

σ(θ
(b)
ijk)b

(b)
j: ◦ c

(b)
k: + (1− xijk)σ(θ

(b)
ijk)b

(b)
j: ◦ c

(b)
k: + 2λAai:.

The partial gradients with respect to bj: and ck: can be computed similarly.
Binary vector representations bring benefits in faster computation of scores

θ
(b)
ijk, because the inner product between binary vectors can be implemented by

bitwise operations: To compute θ
(b)
ijk, we can use XNOR and Bitcount operations:

θ
(b)
ijk = a

(b)
i: (b

(b)
j: ◦ c

(b)
k: )

T = ∆3{2BitC −D}
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Table 1. Benchmark datasets for KGC.

WN18 FB15k WN18RR FB15k-237

Ne 40,943 14,951 40,559 14,505
Nr 18 1,345 11 237
# training triples 141,442 483,142 86,835 272,115
# validation triples 5,000 50,000 3,034 17,535
# test triples 5,000 59,071 3,134 20,466

Table 2. KGC results on WN18 and FB15k: Filtered MRR and Hits@{1, 3, 10} (%).
Letters in boldface signify the best performers in individual evaluation metrics. *, **
and *** indicate the results transcribed from [26], [6] and [11], respectively.

WN18 FB15k

MRR
Hits@

MRR
Hits@

Models 1 3 10 1 3 10

TransE* 45.4 8.9 82.3 93.4 38.0 23.1 47.2 64.1
DistMult* 82.2 72.8 91.4 93.6 65.4 54.6 73.3 82.4
HolE* 93.8 93.0 94.5 94.9 52.4 40.2 61.3 73.9
ComplEx* 94.1 93.6 94.5 94.7 69.2 59.9 75.9 84.0
ANALOGY** 94.2 93.9 94.4 94.7 72.5 64.6 78.5 85.4

CP*** 94.2 93.9 94.4 94.7 72.7 66.0 77.3 83.9
ConvE** 94.3 93.5 94.6 95.6 65.7 55.8 72.3 83.1

CP (D = 200) 94.2 93.9 94.5 94.7 71.9 66.2 75.2 82.0
B-CP (D = 200) 90.1 88.1 91.8 93.3 69.5 61.1 76.0 83.5
B-CP (D = 400) 94.5 94.1 94.8 95.0 72.2 66.3 77.5 84.2
B-CP (D = 300 × 3) 94.6 94.2 95.0 95.3 72.9 66.5 77.7 84.9

whereBitC = Bitcount(XNOR(XNOR(a
(b)
i: , b

(b)

j: ), c
(b)
k: )). x

(b) denotes the boolean

vector whose ith element x
(b)
i is set to 1 if x

(b)
i = ∆, otherwise to 0. Bitcount

returns the number of one-bits in a binary vector and XNOR represents the
logical complement of the exclusive OR operation.

6 Experiments

6.1 Datasets and Evaluation Protocol

We evaluated the performance of our proposal in the standard knowledge graph
completion (KGC) task. We used four standard datasets, WN18, FB15k [4],
WN18RR, and FB15k-237 [6]. Table 1 shows the data statistics4.

We followed the standard evaluation procedure to evaluate the KGC perfor-
mance: Given a test triple (ei, ej , rk), we corrupted it by replacing ei or ej with
every entity eℓ in E and calculated θi,ℓ,k or θℓ,j,k. We then ranked all these triples
by their scores in decreasing order. To measure the quality of the ranking, we
used the mean reciprocal rank (MRR) and Hits at N (Hits@N). We here report
only results in the filtered setting [4], which provides a more reliable performance
metric in the presence of multiple correct triples.

4 Following [11, 14], for each triple (ei, ej , rk) observed in the training set, we added
its inverse triple (ej , ei, r

−1

k ) also in the training set.
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Table 3. KGC results on WN18RR and FB15k-237: Filtered MRR and Hits@{1, 3, 10}
(%). * indicates the results transcribed from [6].

WN18RR FB15k-237

MRR
Hits@

MRR
Hits@

Models 1 3 10 1 3 10

DistMult* 43.0 39.0 44.0 49.0 24.1 15.5 26.3 41.9
ComplEx* 44.0 41.0 46.0 51.0 24.7 15.8 27.5 42.8
R-GCN* – – – – 24.8 15.3 25.8 41.7
ConvE* 43.0 40.0 44.0 52.0 32.5 23.7 35.6 50.1

CP (D = 200) 44.0 42.0 46.0 51.0 29.0 19.8 32.2 47.9
B-CP (D = 200) 45.0 43.0 46.0 50.0 27.8 19.4 30.4 44.6
B-CP (D = 400) 45.0 43.0 46.0 52.0 29.2 20.8 31.8 46.1
B-CP (D = 300 × 3) 48.0 45.0 49.0 53.0 30.3 21.4 33.3 48.2
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Fig. 2. Training loss and filtered MRR vs. epochs trained on WN18RR.

6.2 Experiment Setup

To train CP models, we selected the hyperparameters via grid search such
that the filtered MRR is maximized on the validation set. For standard CP
model, we tried all combinations of λA, λB, λC ∈ {0.0001, 0}, learning rate
η ∈ {0.025, 0.05}, and the embedding dimension D ∈ {15, 25, 50, 100, 150, 200,
300, 400, 500} during grid search. For our binarized CP (B-CP) model, all com-
binations of λA, λB, λC ∈ {0.0001, 0}, η ∈ {0.025, 0.05}, ∆ ∈ {0.3, 0.5} and D ∈
{100, 200, 300, 400, 500} were tried. We randomly generated the initial values of

the representation vectors from the uniform distribution U [−
√
6√
2D

,
√
6√
2D

] [7]. The

maximum number of training epochs was set to 1000. For SGD training, negative
samples were generated using the local closed-world assumption [4]. The number
of negative samples generated per positive sample was 5 for WN18/WN18RR
and 10 for FB15k/FB15k-237. In addition, to further take advantage of the
benign run-time memory footprint of B-CP, we also tested the model ensem-

ble of three independently trained B-CP models5, in which the final ranking is

5 As the original CP model has much larger memory consumption than B-CP, we did
not test model ensemble with the CP model in our experiments.
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Table 4. Results on WN18RR and FB15k-237 with varying embedding dimensions.

Model Bits per entity Bits per relation
MRR

WN18RR FB15k-237

DistMult* (D = 200) 6,400 6,400 43.0 24.1
ComplEx* (D = 200) 12,800 12,800 44.0 24.7
ConvE* (D = 200) 6,400 6,400 43.0 32.5

CP (D = 15) 960 480 40.0 22.0
CP (D = 50) 3,200 1,600 43.0 24.8
CP (D = 200) 12,800 6,400 44.0 29.0
CP (D = 500) 32,000 16,000 43.0 29.2
VQ-CP (D = 200) 400 200 36.0 8.7
VQ-CP (D = 500) 1,000 500 36.0 8.3

B-CP (D = 100) 200 100 38.0 23.2
B-CP (D = 200) 400 200 45.0 27.8
B-CP (D = 300) 600 300 46.0 29.0
B-CP (D = 400) 800 400 45.0 29.2
B-CP (D = 500) 1,000 500 45.0 29.1
B-CP (D = 300 × 3) 1,800 900 48.0 30.3

computed by the sum of the scores of the three models. For this ensemble, the
embedding dimension of each model was set to D = 300, yet the total required
run-time memory is still smaller than CP with D = 200.

We implemented our CP decomposition systems in C++ and conducted all
experiments on a 64-bit 16-Core AMD Ryzen Threadripper 1950x with 3.4GHz
CPUs. The program codes were compiled using GCC 7.3 with -O3 option.

6.3 Results

Main Results We compared standard CP and B-CP models with other state-of-
the-art KGE models. Table 2 shows the results on WN18 and FB15k, and Table 3
displays the results on WN18RR and FB15k-237. For most of the evaluation
metrics, our B-CP model (D = 400) outperformed or was competitive to the
best baseline, although with a small vector dimension (D = 200), B-CP showed
tendency to degrade in its performance. In the table, B-CP (D = 300 × 3)
indicates an ensemble of three different B-CP models (each with D = 300). This
ensemble approach outperformed the baseline B-CP constantly on all datasets.
Figure 2 shows training loss and accuracy versus epochs of training for CP (D =
400) and B-CP (D = 400) on WN18RR. The results indicate that CP is prone
to overfitting with increased epochs of training. By contrast, B-CP appears less
susceptible to overfitting than CP.

KGC Performance vs. Model Size We also investigated how our B-CP
method can maintain the KGC performance while reducing the model size. For
a fair evaluation, we also examined a naive vector quantization method (VQ) [23]
that can reduce the model size. Given a real valued matrix X ∈ RD1×D2 , the
VQ method solves the following optimization problem:

X̂
(b), α̂ = argmin

X(b),α

‖X − αX(b)‖2F
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Fig. 3. CPU run time per 100,000-times score computations with single CPU thread.

where X(b) ∈ {+1,−1}D1×D2 is a binary matrix and α is a positive real value.

The optimal solutions X̂(b) and α̂ are given by Q1(X) and 1
D1×D2

‖X‖1, respec-
tively, where ‖·‖1 denotes l1-norm, and Q1(X) is a sign function whose behavior
in each element x of X is as per the sign function Q1(x). After obtaining factor
matrices A, B and C via CP decomposition, we solved the above optimization
problem independently for each matrix. We call this method VQ-CP.

Table 4 shows the results when the dimension size of the embeddings was var-
ied. While CP requires 64×D and 32×D bits per entity and relation, respectively,
both B-CP and VQ-CP have only to take one thirty-second of them. Obviously,
the task performance dropped significantly after vector quantization (VQ-CP).
The performance of CP also degraded when reducing the vector dimension from
200 to 15 or 50. While simply reducing the number of dimensions degraded the
accuracy, B-CP successfully reduced the model size nearly 10- to 20-fold com-
pared to CP and other KGE models without performance degradation. Even in
the case of B-CP (D = 300 × 3), the model size was 6 times smaller than that
of CP (D = 200).

Computation Time As described in Section 5, the B-CP model can accelerate
the computation of confidence scores by using the bitwise operations (XNOR
and Bitcount). To compare the score computation speed between CP (Float)
and B-CP (XNOR and Bitcount), we calculated the confidence scores 100,000
times for both CP and B-CP, varying the vector size D from 10 to 1000 at 10
increments. Figure 3 clearly shows that bitwise operations provide significant
speed-up compared to standard multiply-accumulate operations.
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Table 5. Results on the Freebase-music dataset.

Accuracy Model size

CP (D = 15) 50.3 0.4GB
CP (D = 200) 89.2 4.8GB
B-CP (D = 400) 92.8 0.3GB

6.4 Evaluation on Large-scale Freebase

To verify the effectiveness of B-CP over larger datasets, we also conducted exper-
iments on the Freebase-music data6. To reduce noises, we removed triples from
the data whose relation and entities occur less than 10 times. The number of the
remaining triples were 18,482,832 which consist of 138 relations and 3,025,684
entities. We split them randomly into three subsets: 18,462,832 training, 10,000
validation, and 10,000 test triples. We randomly generated 20,000 triples that
are not in the knowledge graph, and used them as negative samples; half of them
were placed in the validation set, and the other half in the test set. Experiments
were conducted under the same hyperparameters and negative samples setting
we achieved the best results on the FB15k dataset. We here report the triple clas-
sification accuracy. Table 5 gives the results. As it was with the small datasets,
the performance of CP (D = 15) was again poor. Meanwhile, B-CP successfully
reduced the model size while achieving better performance than CP (D = 200).
These results show that B-CP is robust to the data size.

7 Conclusion

In this paper, we showed that it is possible to obtain binary vectors of relations
and entities in knowledge graphs that take 10–20 times less storage/memory than
the original representations with floating point numbers. Additionally, with the
help of bitwise operations, the time required for score computation was consider-
ably reduced. Tensor factorization arises in many machine learning applications
such as item recommendation [22] and web link analysis [13]. Applying our B-CP
algorithm to the analysis of other relational datasets is an interesting avenue for
future work.

The program codes for the binarized CP decomposition algorithm proposed
here will be provided on the first author’s GitHub page 7.
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