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Abstract. Online Learning to Rank (OLTR) methods optimize ranking models
by directly interacting with users, which allows them to be very efficient and re-
sponsive. All OLTR methods introduced during the past decade have extended on
the original OLTR method: Dueling Bandit Gradient Descent (DBGD). Recently,
a fundamentally different approach was introduced with the Pairwise Differen-
tiable Gradient Descent (PDGD) algorithm. To date the only comparisons of the
two approaches are limited to simulations with cascading click models and low
levels of noise. The main outcome so far is that PDGD converges at higher levels
of performance and learns considerably faster than DBGD-based methods. How-
ever, the PDGD algorithm assumes cascading user behavior, potentially giving it
an unfair advantage. Furthermore, the robustness of both methods to high levels
of noise has not been investigated. Therefore, it is unclear whether the reported
advantages of PDGD over DBGD generalize to different experimental conditions.
In this paper, we investigate whether the previous conclusions about the PDGD
and DBGD comparison generalize from ideal to worst-case circumstances. We
do so in two ways. First, we compare the theoretical properties of PDGD and
DBGD, by taking a critical look at previously proven properties in the context
of ranking. Second, we estimate an upper and lower bound on the performance
of methods by simulating both ideal user behavior and extremely difficult behav-
ior, i.e., almost-random non-cascading user models. Our findings show that the
theoretical bounds of DBGD do not apply to any common ranking model and,
furthermore, that the performance of DBGD is substantially worse than PDGD
in both ideal and worst-case circumstances. These results reproduce previously
published findings about the relative performance of PDGD vs. DBGD and gen-
eralize them to extremely noisy and non-cascading circumstances.
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1 Introduction

Learning to Rank (LTR) plays a vital role in information retrieval. It allows us to op-
timize models that combine hundreds of signals to produce rankings, thereby making
large collections of documents accessible to users through effective search and recom-
mendation. Traditionally, LTR has been approached as a supervised learning problem,
where annotated datasets provide human judgements indicating relevance. Over the
years, many limitations of such datasets have become apparent: they are costly to pro-
duce [3,21] and actual users often disagree with the relevance annotations [23]. As an
alternative, research into LTR approaches that learn from user behavior has increased.
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By learning from the implicit feedback in user behavior, users’ true preferences can
potentially be learned. However, such methods must deal with the noise and biases that
are abundant in user interactions [31]. Roughly speaking, there are two approaches to
LTR from user interactions: learning from historical interactions and Online Learning
to Rank (OLTR). Learning from historical data allows for optimization without gath-
ering new data [14], though it does require good models of the biases in logged user
interactions [4]. In contrast, OLTR methods learn by interacting with the user, thus they
gather their own learning data. As a result, these methods can adapt instantly and are
potentially much more responsive than methods that use historical data.

Dueling Bandit Gradient Descent (DBGD) [30] is the most prevalent OLTR method;
it has served as the basis of the field for the past decade. DBGD samples variants of its
ranking model, and compares them using interleaving to find improvements [12,22].
Subsequent work in OLTR has extended on this approach [10,25,28]. Recently, the first
alternative approach to DBGD was introduced with Pairwise Differentiable Gradient
Descent (PDGD) [19]. PDGD estimates a pairwise gradient that is reweighed to be
unbiased w.r.t. users’ document pair preferences. The original paper that introduced
PDGD showed considerable improvements over DBGD under simulated user behav-
ior [19]: a substantially higher point of performance at convergence and a much faster
learning speed. The results in [19] are based on simulations using low-noise cascading
click models. The pairwise assumption that PDGD makes, namely, that all documents
preceding a clicked document were observed by the user, is always correct in these cir-
cumstances, thus potentially giving it an unfair advantage over DBGD. Furthermore,
the low level of noise presents a close-to-ideal situation, and it is unclear whether the
findings in [19] generalize to less perfect circumstances.

In this paper, we contrast PDGD over DBGD. Prior to an experimental comparison,
we determine whether there is a theoretical advantage of DBGD over PDGD and ex-
amine the regret bounds of DBGD for ranking problems. We then investigate whether
the benefits of PDGD over DBGD reported in [19] generalize to circumstances ranging
from ideal to worst-case. We simulate circumstances that are perfect for both methods –
behavior without noise or position-bias – and circumstances that are the worst possible
scenario – almost-random, extremely-biased, non-cascading behavior. These settings
provide estimates of upper and lower bounds on performance, and indicate how well
previous comparisons generalize to different circumstances. Additionally, we introduce
a version of DBGD that is provided with an oracle interleaving method; its performance
shows us the maximum performance DBGD could reach from hypothetical extensions.

In summary, the following research questions are addressed in this paper:

RQ1 Do the regret bounds of DBGD provide a benefit over PDGD?
RQ2 Do the advantages of PDGD over DBGD observed in prior work generalize to

extreme levels of noise and bias?
RQ3 Is the performance of PDGD reproducible under non-cascading user behavior?

2 Related Work

This section provides a brief overview of traditional LTR (Section 2.1), of LTR from
historical interactions (Section 2.2), and OLTR (Section 2.3).
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2.1 Learning to rank from annotated datasets

Traditionally, LTR has been approached as a supervised problem; in the context of
OLTR this approach is often referred to as offline LTR. It requires a dataset contain-
ing relevance annotations of query-document pairs, after which a variety of methods
can be applied [16]. The limitations of offline LTR mainly come from obtaining such
annotations. The costs of gathering annotations are high as it is both time-consuming
and expensive [3,21]. Furthermore, annotators cannot judge for very specific users, i.e.,
gathering data for personalization problems is infeasible. Moreover, for certain applica-
tions it would be unethical to annotate items, e.g., for search in personal emails or docu-
ments [29]. Additionally, annotations are stationary and cannot account for (perceived)
relevance changes [6,15,27]. Most importantly, though, annotations are not necessar-
ily aligned with user preferences; judges often interpret queries differently from actual
users [23]. As a result, there has been a shift of interest towards LTR approaches that
do not require annotated data.

2.2 Learning to rank from historical interactions

The idea of LTR from user interactions is long-established; one of the earliest exam-
ples is the original pairwise LTR approach [13]. This approach uses historical click-
through interactions from a search engine and considers clicks as indications of rele-
vance. Though very influential and quite effective, this approach ignores the noise and
biases inherent in user interactions. Noise, i.e., any user interaction that does not reflect
the user’s true preference, occurs frequently, since many clicks happen for unexpected
reasons [23]. Biases are systematic forms of noise that occur due to factors other than
relevance. For instance, interactions will only involve displayed documents resulting
in selection bias [29]. Another important form of bias in LTR is position bias, which
occurs because users are less likely to consider documents that are ranked lower [31].
Thus, to learn true preferences from user interactions effectively, a LTR method should
be robust to noise and handle biases correctly.

In recent years counter-factual LTR methods have been introduced that correct for
some of the bias in user interactions. Such methods uses inverse propensity scoring to
account for the probability that a user observed a ranking position [14]. Thus, clicks on
positions that are observed less often due to position bias will have greater weight to
account for that difference. However, the position bias must be learned and estimated
somewhat accurately [1]. On the other side of the spectrum are click models, which
attempt to model user behavior completely [4]. By predicting behavior accurately, the
effect of relevance on user behavior can also be estimated [2,29].

An advantage of these approaches over OLTR is that they only require historical
data and thus no new data has to be gathered. However, unlike OLTR, they do require a
fairly accurate user model, and thus they cannot be applied in cold-start situations.

2.3 Online learning to rank

OLTR differs from the approaches listed above because its methods intervene in the
search experience. They have control over what results are displayed, and can learn
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from their interactions instantly. Thus, the online approach performs LTR by interacting
with users directly [30]. Similar to LTR methods that learn from historical interaction
data, OLTR methods have the potential to learn the true user preferences. However, they
also have to deal with the noise and biases that come with user interactions. Another ad-
vantage of OLTR is that the methods are very responsive, as they can apply their learned
behavior instantly. Conversely, this also brings a danger as an online method that learns
incorrect preferences can also worsen the experience immediately. Thus, it is important
that OLTR methods are able to learn reliably in spite of noise and biases. Thus, OLTR
methods have a two-fold task: they have to simultaneously present rankings that provide
a good user experience and learn from user interactions with the presented rankings.

The original OLTR method is Dueling Bandit Gradient Descent (DBGD); it ap-
proaches optimization as a dueling bandit problem [30]. This approach requires an on-
line comparison method that can compare two rankers w.r.t. user preferences; tradition-
ally, DBGD methods use interleaving. Interleaving methods take the rankings produced
by two rankers and combine them in a single result list, which is then displayed to
users. From a large number of clicks on the presented list the interleaving methods can
reliably infer a preference between the two rankers [12,22]. At each timestep, DBGD
samples a candidate model, i.e., a slight variation of its current model, and compares the
current and candidate models using interleaving. If a preference for the candidate is in-
ferred, the current model is updated towards the candidate slightly. By doing so, DBGD
will update its model continuously and should oscillate towards an inferred optimum.
Section 3 provides a complete description of the DBGD algorithm.

Virtually all work in OLTR in the decade since the introduction of DBGD has used
DBGD as a basis. A straightforward extension comes in the form of Multileave Gradient
Descent [25] which compares a large number of candidates per interaction [18,24,26].
This leads to a much faster learning process, though in the long term this method does
not seem to improve the point of convergence.

One of the earliest extensions of DBGD proposed a method for reusing historical
interactions to guide exploration for faster learning [10]. While the initial results showed
great improvements [10], later work showed performance drastically decreasing in the
long term due to bias introduced by the historical data [20]. Unfortunately, OLTR work
that continued this historical approach [28] also only considered short term results;
moreover, the results of some work [32] are not based on held-out data. As a result, we
do not know whether these extensions provide decent long-term performance and it is
unclear whether the findings of these studies generalize to more realistic settings.

Recently, an inherently different approach to OLTR was introduced with PDGD [19].
PDGD interprets its ranking model as a distribution over documents; it estimates a pair-
wise gradient from user interactions with sampled rankings. This gradient is differen-
tiable, allowing for non-linear models like neural networks to be optimized, something
DBGD is ineffective at [17,19]. Section 4 provides a detailed description of PDGD.
In the paper in which we introduced PDGD, claim that it provides substantial im-
provements over DBGD. However, those claims are based on cascading click mod-
els with low levels of noise. This is problematic because PDGD assumes a cascading
user, and could thus have an unfair advantage in this setting. Furthermore, it is unclear
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Algorithm 1 Dueling Bandit Gradient Descent (DBGD).
1: Input: initial weights: θ1; unit: u; learning rate η.
2: for t← 1 . . .∞ do
3: qt ← receive query(t) obtain a query from a user
4: θct ← θt + sample from unit sphere(u) create candidate ranker
5: Rt ← get ranking(θt ,Dqt ) get current ranker ranking
6: Rct ← get ranking(θct ,Dqt ) get candidate ranker ranking
7: It ← interleave(Rt ,R

c
t ) interleave both rankings

8: ct ← display to user(It) displayed interleaved list, record clicks
9: if preference for candidate(It, ct, Rt, R

c
t) then

10: θt+1 ← θt + η(θct − θt) update model towards candidate
11: else
12: θt+1 ← θt no update

whether DBGD with a perfect interleaving method could still improve over PDGD.
Lastly, DBGD has proven regret bounds while PDGD has no such guarantees.

In this study, we clear up these questions about the relative strengths of DBGD and
PDGD by comparing the two methods under non-cascading, high-noise click models.
Additionally, by providing DBGD with an oracle comparison method, its hypothetical
maximum performance can be measured; thus, we can study whether an improvement
over PDGD is hypothetically possible. Finally, a brief analysis of the theoretical regret
bounds of DBGD shows that they do not apply to any common ranking model, therefore
hardly providing a guaranteed advantage over PDGD.

3 Dueling Bandit Gradient Descent

This section describes the DBGD algorithm in detail, before discussing the regret bounds
of the algorithm.

3.1 The Dueling Bandit Gradient Descent method

The DBGD algorithm [30] describes an indefinite loop that aims to improve a ranking
model at each step; Algorithm 1 provides a formal description. The algorithm starts a
given model with weights θ1 (Line 1); then it waits for a user-submitted query (Line 3).
At this point a candidate ranker is sampled from the unit sphere around the current
model (Line 4), and the current and candidate model both produce a ranking for the
current query (Line 5 and 6). These rankings are interleaved (Line 7) and displayed to
the user (Line 8). If the interleaving method infers a preference for the candidate ranker
from subsequent user interactions the current model is updated towards the candidate
(Line 10), otherwise no update is performed (Line 12). Thus, the model optimized by
DBGD should converge and oscillate towards an optimum.

3.2 Regret bounds of Dueling Bandit Gradient Descent

Unlike PDGD, DBGD has proven regret bounds [30], potentially providing an advan-
tage in the form of theoretical guarantees. In this section we answer RQ1 by critically
looking at the assumptions which form the basis of DBGD’s proven regret bounds.
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The original DBGD paper [30] proved a sublinear regret under several assump-
tions. DBGD works with the parameterized space of ranking functionsW , that is, ev-
ery θ ∈ W is a different set of parameters for a ranking function. For this study we
will only consider linear models because all existing OLTR work has dealt with them
[10,11,19,20,25,28,30,32]. But we note that the proof is easily extendable to neural net-
works where the output is a monotonic function applied to a linear combination of the
last layer. Then there is assumed to be a concave utility function u :W → R; since this
function is concave, there should only be a single instance of weights that are optimal
θ∗. Furthermore, this utility function is assumed to be L-Lipschitz smooth:

∃L ∈ R, ∀(θa, θb) ∈ W, |u(θa)− u(θb)| < L‖θa − θb‖. (1)

We will show that these assumptions are incorrect: there is an infinite number of optimal
weights, and the utility function u cannot be L-Lipschitz smooth. Our proof relies on
two assumptions that avoid cases where the ranking problem is trivial. First, the zero
ranker is not the optimal model:

θ∗ 6= 0. (2)

Second, there should be at least two models with different utility values:

∃(θ, θ′) ∈ W, u(θ) 6= u(θ′). (3)

We will start by defining the set of rankings a model f(·, θ) will produce as:

RD(f(·, θ)) = {R | ∀(d, d′) ∈ D, [f(d, θ) > f(d′, θ)→ d �R d′]}. (4)

It is easy to see that multiplying a model with a positive scalar α > 0 will not affect
this set:

∀α ∈ R>0, RD(f(·, θ)) = RD(αf(·, θ)). (5)

Consequently, the utility of both functions will be equal:

∀α ∈ R>0, u(f(·, θ)) = u(αf(·, θ)). (6)

For linear models scaling weights has the same effect: αf(·, θ) = f(·, αθ). Thus, the
first assumption cannot be true since for any optimal model f(·, θ∗) there is an infinite
set of equally optimal models: {f(·, αθ∗) | α ∈ R>0}.

Then, regarding L-Lipschitz smoothness, using any positive scaling factor:

∀α ∈ R>0, |u(θa)− u(θb)| = |u(αθa)− u(αθb)|, (7)
∀α ∈ R>0, ‖αθa − αθb‖ = α‖θa − θb‖. (8)

Thus the smoothness assumption can be rewritten as:

∃L ∈ R, ∀α ∈ R>0, ∀(θa, θb) ∈ W, |u(θa)− u(θb)| < αL‖θa − θb‖. (9)

However, there is always an infinite number of values for α small enough to break the
assumption. Therefore, we conclude that a concave L-Lipschitz smooth utility function
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can never exist for a linear ranking model, thus the proof for the regret bounds is not
applicable when using linear models.

Consequently, the regret bounds of DBGD do not apply to the ranking problems in
previous work. One may consider other models (e.g., spherical coordinate based mod-
els), however this still means that for the simplest and most common ranking problems
there are no proven regret bounds. As a result, we answer RQ1 negatively, the regret
bounds of DBGD do not provide a benefit over PDGD for the ranking problems in LTR.

4 Pairwise Differentiable Gradient Descent

The Pairwise Differentiable Gradient Descent (PDGD) [19] algorithm is formally de-
scribed in Algorithm 2. PDGD interprets a ranking function f(·, θ) as a probability
distribution over documents by applying a Plackett-Luce model:

P (d|D, θ) = ef(d,θ)∑
d′∈D e

f(d′,θ)
. (10)

First, the algorithm waits for a user query (Line 3), then a ranking R is created by
sampling documents without replacement (Line 4). Then PDGD observes clicks from
the user and infers pairwise document preferences from them. All documents preceding
a clicked document and the first succeeding one are assumed to be observed by the
user. Preferences between clicked and unclicked observed documents are inferred by
PDGD; this is a long-standing assumption in pairwise LTR [13]. We denote an inferred
preference between documents as di �c dj , and the probability of the model placing di
earlier than dj is denoted and calculated by:

P (di � dj | θ) =
ef(di,θ)

ef(di,θ) + ef(dj ,θ)
. (11)

The gradient is estimated as a sum over inferred preferences with a weight ρ per pair:

∆f(·, θ)

≈
∑

di�cdj

ρ(di, dj , R,D)[∆P (di � dj | θ)]

=
∑

di�cdj

ρ(di, dj , R,D)P (di � dj | θ)P (dj � di | θ)(f ′(di, θ)− f ′(dj , θ)).

(12)

After computing the gradient (Line 10), the model is updated accordingly (Line 11).
This will change the distribution (Equation 10) towards the inferred preferences. This
distribution models the confidence over which documents should be placed first; the
exploration of PDGD is naturally guided by this confidence and can vary per query.

The weighting function ρ is used to make the gradient of PDGD unbiased w.r.t.
document pair preferences. It uses the reverse pair ranking: R∗(di, dj , R), which is the
same ranking as R but with the document positions of di and dj swapped. Then ρ is the
ratio between the probability of R and R∗:

ρ(di, dj , R,D) =
P (R∗(di, dj , R) | D)

P (R | D) + P (R∗(di, dj , R) | D)
. (13)
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Algorithm 2 Pairwise Differentiable Gradient Descent (PDGD).
1: Input: initial weights: θ1; scoring function: f ; learning rate η.
2: for t← 1 . . .∞ do
3: qt ← receive query(t) // obtain a query from a user
4: Rt ← sample list(fθt , Dqt) // sample list according to Eq. 10
5: ct ← receive clicks(Rt) // show result list to the user
6: ∇f(·, θt)← 0 // initialize gradient
7: for di �c dj ∈ ct do
8: w ← ρ(di, dj , R,D) // initialize pair weight (Eq. 13)
9: w ← w × P (di � dj | θt)P (dj � di | θt) // pair gradient (Eq. 12)

10: ∇f(·, θt)← ∇fθt + w × (f ′(di, θt)− f ′(dj , θt)) // model gradient (Eq. 12)
11: θt+1 ← θt + η∇f(·, θt) // update the ranking model

In the original PDGD paper [19], the weighted gradient is proven to be unbiased w.r.t.
document pair preferences under certain assumptions about the user. Here, this unbi-
asedness is defined by being able to rewrite the gradient as:

E[∆f(·, θ)] =
∑

(di,dj)∈D

αij(f
′(di, θ)− f ′(dj , θ)), (14)

and the sign of αij agreeing with the preference of the user:

sign(αij) = sign(relevance(di)− relevance(dj)). (15)

The proof in [19] only relies on the difference in the probabilities of inferring a prefer-
ence: di �c dj in R and the opposite preference dj �c di in R∗(di, dj , R). The proof
relies on the sign of this difference to match the user’s preference:

sign(P (di �c dj | R)− P (dj �c di | R∗)) =
sign(relevance(di)− relevance(dj)).

(16)

As long as Equation 16 is true, Equation 14 and 15 hold as well. Interestingly, this
means that other assumptions about the user can be made than in [19], and other vari-
ations of PDGD are possible, e.g., the algorithm could assume that all documents are
observed and the proof still holds.

The original paper on PDGD reports large improvements over DBGD, however
these improvements were observed under simulated cascading user models. This means
that the assumption that PDGD makes about which documents are observed are always
true. As a result, it is currently unclear whether the method is really better in cases
where the assumption does not hold.

5 Experiments

In this section we detail the experiments that were performed to answer the research
questions in Section 1.1

1 The resources for reproducing the experiments in this paper are available at https://
github.com/HarrieO/OnlineLearningToRank

https://github.com/HarrieO/OnlineLearningToRank
https://github.com/HarrieO/OnlineLearningToRank
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Table 1. Click probabilities for simulated perfect or almost random behavior.

P (click(d) | relevance(d), observed(d))

relevance(d) 0 1 2 3 4

perfect 0.00 0.20 0.40 0.80 1.00
almost random 0.40 0.45 0.50 0.55 0.60

5.1 Datasets
Our experiments are performed over three large labelled datasets from commercial
search engines, the largest publicly available LTR datasets. These datasets are the MLSR-
WEB10K [21], Yahoo! Webscope [3], and Istella [5] datasets. Each contains a set of
queries with corresponding preselected document sets. Query-document pairs are rep-
resented by feature vectors and five-grade relevance annotations ranging from not rele-
vant (0) to perfectly relevant (4). Together, the datasets contain over 29,900 queries and
between 136 and 700 features per representation.

5.2 Simulating user behavior
In order to simulate user behavior we partly follow the standard setup for OLTR [8,11,20,25,33].
At each step a user issued query is simulated by uniformly sampling from the datasets.
The algorithm then decides what result list to display to the user, the result list is limited
to k = 10 documents. Then user interactions are simulated using click models [4]. Past
OLTR work has only considered cascading click models [7]; in contrast, we also use
non-cascading click models. The probability of a click is conditioned on relevance and
observance:

P (click(d) | relevance(d), observed(d)). (17)

We use two levels of noise to simulate perfect user behavior and almost random be-
havior [9], Table 1 lists the probabilities of both. The perfect user observes all docu-
ments, never clicks on anything non-relevant, and always clicks on the most relevant
documents. Two variants of almost random behavior are used. The first is based on
cascading behavior, here the user first observes the top document, then decides to click
according to Table 1. If a click occurs, then, with probability P (stop | click) = 0.5
the user stops looking at more documents, otherwise the process continues on the next
document. The second almost random behavior is simulated in a non-cascading way;
here we follow [14] and model the observing probabilities as:

P (observed(d) | rank(d)) = 1

rank(d)
. (18)

The important distinction is that it is safe to assume that the cascading user has ob-
served all documents ranked before a click, while this is not necessarily true for the
non-cascading user. Since PDGD makes this assumption, testing under both models
can show us how much of its performance relies on this assumption. Furthermore, the
almost random model has an extreme level of noise and position bias compared to the
click models used in previous OLTR work [11,20,25], and we argue it simulates an
(almost) worst-case scenario.
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5.3 Experimental runs

In our experiments we simulate runs consisting of 1,000,000 impressions; each run was
repeated 125 times under each of the three click models. PDGD was run with η = 0.1
and zero initialization, DBGD was run using Probabilistic Interleaving [20] with zero
initialization, η = 0.001, and the unit sphere with δ = 1. Other variants like Multi-
leave Gradient Descent [25] are not included; previous work has shown that their per-
formance matches that of regular DBGD after around 30,000 impressions [19,20,25].
The initial boost in performance comes at a large computational cost, though, as the
fastest approaches keep track of at least 50 ranking models [20], which makes running
long experiments extremely impractical. Instead, we introduce a novel oracle version
of DBGD, where, instead of interleaving, the NDCG values on the current query are
calculated and the highest scoring model is selected. This simulates a hypothetical per-
fect interleaving method, and we argue that the performance of this oracle run indicates
what the upper bound on DBGD performance is.

Performance is measured by NDCG@10 on a held-out test set, a two-sided t-test
is performed for significance testing. We do not consider the user experience during
training, because past work has already investigated this aspect thoroughly [19].

6 Experimental Results and Analysis

Recall that in Section 3.2 we have already provided a negative answer to RQ1: the
regret bounds of DBGD do not provide a benefit over PDGD for the ranking problems
in LTR. In this section we present our experimental results and answer RQ2 (whether
the advantages of PDGD over DBGD of previous work generalize to extreme levels
of noise and bias) and RQ3 (whether the performance of PDGD is reproducible under
non-cascading user behavior).

Our main results are presented in Table 2. Additionally, Figure 1 displays the av-
erage performance over 1,000,000 impressions. First, we consider the performance of
DBGD; there is a substantial difference between its performance under the perfect and
almost random user models on all datasets. Thus, it seems that DBGD is strongly af-
fected by noise and bias in interactions; interestingly, there is little difference between
performance under the cascading and non-cascading behavior. On all datasets the oracle
version of DBGD performs significantly better than DBGD under perfect user behavior.
This means there is still room for improvement and hypothetical improvements in, e.g.,
interleaving could lead to significant increases in long-term DBGD performance.

Next, we look at the performance of PDGD; here, there is also a significant dif-
ference between performance under the perfect and almost random user models on all
datasets. However, the effect of noise and bias is very limited compared to DBGD, and
this difference at 1,000,000 impressions is always less than 0.03 NDCG on any dataset.

To answer RQ2, we compare the performance of DBGD and PDGD. Across all
datasets, when comparing DBGD and PDGD under the same levels of interaction noise
and bias, the performance of PDGD is significantly better in every case. Furthermore,
PDGD under the perfect user model significantly outperforms the oracle run of DBGD,
despite the latter being able to directly observe the NDCG of rankers on the current
query. Moreover, when comparing PDGD performance under the almost random user
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Fig. 1. Performance (NDCG@10) on held-out data from Yahoo (top), MSLR (center), Istella
(bottom) datasets, under the perfect, and almost random user models: cascading (casc.) and non-
cascading (non-casc.). The shaded areas display the standard deviation.
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model with DBGD under the perfect user model, we see the differences are limited and
in both directions. Thus, even under ideal circumstances DBGD does not consistently
outperform PDGD under extremely difficult circumstances. As a result, we answer RQ2
positively: our results strongly indicate that the performance of PDGD is considerably
better than DBGD and that these findings generalize from ideal circumstances to set-
tings with extreme levels of noise and bias.

Finally, to answer RQ3, we look at the performance under the two almost ran-
dom user models. Surprisingly, there is no clear difference between the performance
of PDGD under cascading and non-cascading user behavior. The differences are small
and per dataset it differs which circumstances are slightly preferred. Therefore, we an-
swer RQ3 positively: the performance of PDGD is reproducible under non-cascading
user behavior.

7 Conclusion

In this study, we have reproduced and generalized findings about the relative perfor-
mance of Dueling Bandit Gradient Descent (DBGD) and Pairwise Differentiable Gra-
dient Descent (PDGD). Our results show that the performance of PDGD is reproducible
under non-cascading user behavior. Furthermore, PDGD outperforms DBGD in both
ideal and extremely difficult circumstances with high levels of noise and bias. Moreover,
the performance of PDGD in extremely difficult circumstances is comparable to that
of DBGD in ideal circumstances. Additionally, we have shown that the regret bounds
of DBGD are not applicable to the ranking problem in LTR. In summary, our results
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Table 2. Performance (NDCG@10) after 1,000,000 impressions for DBGD and PDGD under a
perfect click model and two almost-random click models: cascading and non-cascading, and
DBGD with an oracle comparator. Significant improvements and losses (p < 0.01) between
DBGD and PDGD are indicated by N, H, and ◦ (no significant difference). Indications are in
order of: oracle, perfect, cascading, and non-cascading.

Yahoo MSLR Istella

Dueling Bandit Gradient Descent

oracle 0.744 (0.001) H N N 0.438 (0.004) H N N 0.584 (0.001) H N N

perfect 0.730 (0.002) H ◦ ◦ 0.426 (0.004) H N N 0.554 (0.002) H H H

cascading 0.696 (0.008) H H H 0.320 (0.006) H H H 0.415 (0.014) H H H

non-cascading 0.692 (0.010) H H H 0.320 (0.014) H H H 0.422 (0.014) H H H

Pairwise Differentiable Gradient Descent

perfect 0.752 (0.001) N N N N 0.442 (0.003) N N N N 0.592 (0.000) N N N N

cascading 0.730 (0.003) H ◦ N N 0.420 (0.007) H H N N 0.563 (0.003) H N N N

non-cascading 0.729 (0.003) H ◦ N N 0.424 (0.005) H H N N 0.570 (0.003) H N N N

strongly confirm the previous finding that PDGD consistently outperforms DBGD, and
generalizes this conclusion to circumstances with extreme levels of noise and bias.

Consequently, there appears to be no advantage to using DBGD over PDGD in ei-
ther theoretical or empirical terms. In addition, a decade of OLTR work has attempted
to extend DBGD in numerous ways without leading to any measurable long-term im-
provements. Together, this suggests that the general approach of DBGD based meth-
ods, i.e., sampling models and comparing with online evaluation, is not an optimally
effective way of optimizing ranking models. Although the PDGD method considerably
outperforms the DBGD approach, we currently do not have a theoretical explanation
for this difference. Thus it seems plausible that a more effective OLTR method could be
derived, if the theory behind the effectiveness of OLTR methods is better understood.
Due to this potential and the current lack of regret bounds applicable to OLTR, we argue
that a theoretical analysis of OLTR could make a very valuable future contribution to
the field.

Finally, we consider the limitations of the comparison in this study. As is standard
in OLTR our results are based on simulated user behavior. These simulations provide
valuable insights: they enable direct control over biases and noise, and evaluation can be
performed at each time step. In this paper, the generalizability of this setup was pushed
the furthest by varying the conditions to the extremely difficult. It appears unlikely that
more reliable conclusions can be reached from simulated behavior. Thus we argue that
the most valuable future comparisons would be in experimental settings with real users.
Furthermore, with the performance improvements of PDGD the time seems right for
evaluating the effectiveness of OLTR in real-world applications.
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