
Replicating Relevance-Ranked Synonym
Discovery in a New Language and Domain

Andrew Yates1 and Michael Unterkalmsteiner2

1 Max Planck Institute for Informatics, Saarbrücken, Germany
ayates@mpi-inf.mpg.de

2 Blekinge Institute of Technology, Software Engineering Research Laboratory,
Karlskrona, Sweden

michael.unterkalmsteiner@bth.se

Abstract. Domain-specific synonyms occur in many specialized search
tasks, such as when searching medical documents, legal documents, and
software engineering artifacts. We replicate prior work on ranking domain-
specific synonyms in the consumer health domain by applying the ap-
proach to a new language and domain: identifying Swedish language
synonyms in the building construction domain. We chose this setting
because identifying synonyms in this domain is helpful for downstream
systems, where different users may query for documents (e.g., engineering
requirements) using different terminology. We consider two new features
inspired by the change in language and methodological advances since
the prior work’s publication. An evaluation using data from the building
construction domain supports the finding from the prior work that syn-
onym discovery is best approached as a learning to rank task in which
a human editor views ranked synonym candidates in order to construct
a domain-specific thesaurus. We additionally find that FastText embed-
dings alone provide a strong baseline, though they do not perform as
well as the strongest learning to rank method. Finally, we analyze the
performance of individual features and the differences in the domains.

Keywords: Synonym discovery · thesaurus construction · domain-specific
search · replication · generalization

1 Introduction

The vocabulary mismatch problem [8] and its detrimental effect on recall [7]
have long been recognized by the information retrieval community. In the ab-
sence of query expansion, whether by using pseudo relevance feedback or a lookup
method, finding relevant information is a matter of constructing a query that
expresses the user’s information need using the same terms found in relevant
documents. In the case of domain-specific search tasks, such as search in medi-
cal documents [12], legal documents [19], patents [27] and software engineering
artifacts [15,11], domain-specific synonyms complicate information retrieval as
either the searcher or the retrieval engine need to be aware of terms that may be

ar
X

iv
:2

31
0.

01
50

7v
1 

 [
cs

.I
R

] 
 2

 O
ct

 2
02

3



2 Yates and Unterkalmsteiner

used interchangeably. These specialized information retrieval tasks can benefit
from thesauri that are crafted for their specific domain.

We chose to replicate and generalize a paper on using learning to rank for
human-assisted synonym discovery, because we are interested in improving the
synonyms in a classification system (ontology) from the building construction
domain. While the users of the classification system are professionals, they are
usually specialized in subsets of the construction business and need to coordi-
nate with users specialized in other subsets of the domain. An improved set of
synonyms would likely help the collaboration between the different parties using
the classification system, such as when searching requirements documents.

Yates et al. [25] proposed a method that produces a ranked list of domain-
specific synonyms using a domain-specific corpus as input. Their learning to rank
approach uses a set of features that outperformed previous synonym discovery
methods that relied on single statistical measures: pointwise mutual information
over term co-occurrences [23] and pointwise total correlation between two terms
and the syntactic context (dependency relations) in which the terms appear [10].

In this paper we replicate Yates et al.’s method on a different domain (build-
ing construction) and language (Swedish) in order to evaluate the generalizability
of the approach. We used the original implementation, adapting preprocessing
and features to the new setting. As such, we perform an inferential reproduc-
tion [9] where we draw similar conclusions as the original paper after evaluating
it on a completely different dataset. Our contributions are (1) an evaluation of
the method proposed by Yates et al. on a new language and different domain and
(2) the proposal and evaluation of new features inspired by recent methodology
advances and the differences introduced by the new domain and language.

2 Methodology

In this section we describe the synonym discovery task before describing our
replication of the experimental setup used by Yates et al. We refer to the paper
by Yates et al. as the original study and to this paper as the replication study.

2.1 Problem formulation

As in the original study, we define synonym discovery as the task of identifying a
target term’s correct synonyms from among a set of synonym candidates. Due to
the difficulty of this problem, the original study argued that it is best approached
as a synonym search task in which a domain-specific corpus is coupled with a
learning to rank method in order to help a user quickly identify a target term’s
synonyms. For example, in the original study, the user might search for the target
term alopecia with the intent of identifying domain-specific synonyms such as
hair loss and missing hair. Such synonyms would ideally be ranked highly, but
because of the task’s inherent difficulty, incorrect terms like greying hair and
headache are also likely to be ranked highly. This ranked list can then be used
by a human editor in order to manually build a list of domain-specific synonyms.



Replicating Relevance-Ranked Synonym Discovery 3

For example, in the original study the method was used to augment a thesaurus
mapping expert medical terms (e.g., alopecia) to lay synonyms often used in
social media in place of the expert terms (e.g., losing hair).

The original study proposed to re-frame the evaluation of synonym discovery
approaches from a TOEFL3 style problem (i.e., given a term, pick the correct
synonym from n candidate terms) to a ranking problem (i.e., given a term, eval-
uate how many true synonyms are ranked in the top X% of n candidates). This
problem re-framing stems from the observation that the TOEFL style test rep-
resents the synonym discovery problem only when there is a sufficiently large
number of synonym candidates. However, by increasing the number of incorrect
choices, the evaluated approaches, including their own, were not able to answer
the TOEFL-style question in most cases. Ranking synonym candidates accord-
ing to their probability of being a true synonym of a target terms mirrors the
synonym discovery problem more accurately. Ultimately, the involvement of a
human editor is required to build an accurate domain-specific thesaurus.

One motivation for performing domain-specific synonym discovery is that
we would like to cater for both propositional synonyms and near-synonyms.
Propositional synonyms refer to terms that can be used interchangeably with-
out affecting the truth condition of a statement. For example, the statements
He is a statesman and He is a politician, referring to the same person, can
both be true. This type of synonymity is concerned with identity rather than
similarity of meaning, while near-synonyms refer to terms with similar meaning
and are context-dependent [22]. For example, in the building construction do-
main, the term kylelement (cooling panel) and the term för̊angare (evaporator)
are synonymous, and are used to describe a thermal cooling object. However,
in the maritime domain, evaporators are used off-shore to produce fresh wa-
ter, a different function from the building construction domain. These subtle
domain-specific differences call for an approach that takes context into account
and allows for the inclusion of human expertise when selecting near-synonyms
from synonym candidates.

Formally, given a target term wt and a set of candidate terms C, a synonym
discovery method ranks each candidate term wc ∈ C with respect to its likelihood
of being a synonym for the target term wt in the target domain.

2.2 Replication design

The objectives of this replication study are to (1) evaluate the generalizability
of the original finding that synonym discovery is best approached as a ranking
problem, (2) to evaluate the generalizability of the learning to rank method
proposed by Yates et al. in order to determine whether it is still the best approach
in a new language and domain, and (3) to investigate whether the approach can
be improved in our new setting by incorporating methodological improvements
that were not considered in the original work (i.e., a language-specific feature,
a contemporaneous term embedding feature, and a more sophisticated learning

3 Test Of English as a Foreign Language



4 Yates and Unterkalmsteiner

to rank model). We generalize over both the experimental setting (i.e., language
and domain) and over time by considering both features specific to our new
setting and new approaches that have become popular since the original work’s
publication. We evaluate the original approach, the best-performing baseline in
the original work, a new embedding-based baseline, and a variant of the original
approach using an improved learning to rank model on both the TOEFL task
and the relevance ranking task from the original work.

2.3 Baselines

We compare the learning to rank method proposed in the original study with
several baselines. We include the baseline that performed best in the original
study as well two additional baselines based on embedding similarity and the
similarity of dependency relation contexts.

PMI. The best-performing baseline in the original study was pointwise mutual
information (PMI) calculated over term co-occurrences in sliding windows as
proposed by Terra and Clarke [23]. We calculate PMI over 16-term sliding win-
dows with the constraint that each window can only cover a single sentence.
PMI(wc, wt) can then be used as the ranking function for obtaining a ranked
list of synonyms for the target term wc.
EmbeddingSim. Word embeddings have become common since the original
study’s publication and are often used in information retrieval and natural lan-
guage processing tasks. These methods are trained in an unsupervised manner
on a large corpus to create dense word representations that encode some of the
words’ properties. The FastText [3], word2vec [17], and GloVe [21] methods are
often used. Similar to the PMI method, word embeddings capture distributional
similarity, and work has shown that much of their improvements over PMI come
from the training setup used rather than from the underlying algorithm [13]. We
train FastText on our corpus and rank a target term’s candidates based on the
cosine similarity between the term embeddings for wt and wc. The incorporation
of this baseline is an example of “generalization over time” since this method is
clearly relevant to the synonym discovery task, but it was not available at the
time of the original study’s publication.
LinSim. Lin’s similarity measure [14] was originally proposed as a method for
identifying synonyms and other related words. LinSim was used as a feature in
the original study, but not as a separate baseline. This measure is similar to
Hagiwara’s methods [10] from the original study in that it considers pointwise
mutual information over term contexts defined by dependency relations. It has
the advantage of being less computationally expensive to compute on large cor-
pora, however, so in this study we use it in place of Hagiwara’s supervised and
unsupervised methods.

2.4 Supervised Approaches

We evaluate two supervised learning to rank approaches on our dataset: a logistic
regression as proposed in the original study, which is a pointwise method that



Replicating Relevance-Ranked Synonym Discovery 5

has been used for learning to rank in other contexts [26], and LambdaMART
[6], a pairwise method. Given a target term wt and a candidate term wc, we
compute the following features for use with both supervised methods:

– Windows: the number of windows containing both wt and wc, normalized by
the smaller of the two counts. With the Wikipedia and Trafikverket corpora,
a window is defined as a sequence of up to 16 terms appearing in a single
sentence. With the Web corpus, a window is defined as a sequence of up to
16 terms appearing in a HTML element. Let countwin(x) be the number of
windows containing the term x and countwin(x, y) be the number of windows
containing both terms x and y. This feature is then calculated as

Windows(wt, wc) =
countwin(wt, wc)

min(countwin(wt), countwin(wc))

– LevDist: the Levenshtein distance (i.e., edit distance) between wt and wc.
– NGram: the probability that the target term wt appears in a specific position

in a n-gram given that the candidate term wc has also appeared in this
position. As in the original work, we consider all trigrams that appear in our
corpora. Let countng(x) be the number of unique n-grams a term x appears
in and countng(x, y) be the number of unique n-grams in which both terms x
and y appear in the same position (e.g., given the trigrams rate/of/building
and rate/of/construction, both construction and building appear in the same
position). This feature is then calculated as

NGram(wt, wc) =
countng(wt, wc)

countng(wc)

– POSNGram: the probability that the target term wt appears in a specific po-
sition in a part of speech n-gram given that the candidate term wc has also
appeared in this position. As in the original work, this is equivalent to NGram
after replacing each term with its part of speech.

– LinSim: the similarity between wt and wc as computed using Lin’s similarity
measure [14]. This measure requires dependency parsing, which we perform
with MaltParser [18]. This feature also serves as one of our baselines.

– RISim: the cosine distance between the vectors for wt and wc, as computed
using random indexing. We compute these vectors use the SemanticVectors
package4 [24] with its default parameters.

– Decompound: the number of components shared by wt and wc, normalized
by the minimum number of components in either term. We use the SECOS
decompounder [16] to split each term into their components, which decom-
pounds each term using several strategies. We always choose the decom-
pounding strategy that results in the largest number of components.

– EmbeddingSim: the cosine distance between word embeddings for wt and wc.
We used FastText embeddings [3] trained on our corpus. This feature also
serves as one of our baselines.

4 https://github.com/semanticvectors/semanticvectors/

https://github.com/semanticvectors/semanticvectors/


6 Yates and Unterkalmsteiner

As described in the baselines section, we do not consider the two features
from the original work that were based on Hagiwara’s definition of contexts. The
Decompound and EmbeddingSim features did not appear in the original work.
We introduce the Decompound feature to account for the fact that many of our
target terms are compound nouns; it is often the case that their synonyms share
components with the target term. For example, the target term apparatsk̊ap
(device cabinet) shares the component sk̊ap (cabinet) with its domain-specific
synonym elsk̊ap (electrical cabinet). We introduce the EmbeddingSim feature, on
the other hand, because embedding-based similarity measures based on FastText
[3], word2vec [17], and GloVe [21] have become popular alternatives to random
indexing since the original work’s publication.

3 Replication

3.1 Dataset

The original experiment focused on the medical side effect domain, with a corpus
written in the English language. In this replication, we focus on the building
construction business, in particular the provisioning and building of roads and
public transportation infrastructure, and change the language to Swedish. We use
the synonyms defined in CoClass [2] as the ground truth. CoClass is a hierarchical
classification system, implementing ISO 12006-2:2015 [1], that is intended to
facilitate the life-cycle management of construction projects. It is co-developed
by the Swedish Transportation Agency (Trafikverket) and consultancy firms.
Table 1 provides an overview of the dataset differences between the two studies.

Table 1: Comparison of the original experiment and the replication

Original Replication

Domain Medical side effects Building construction
Language English Swedish
Terms with/without synonyms 1,791/0 574/856
Average number of synonyms per term 2.8 (σ = 1.4) 3.8 (σ = 4.4)
Min/Max number of synonyms per term 2/11 1/46
Phrases/single term proportion 67%/33% 26%/74%
Corpus size (Number of documents) 400,000 4,241,509

While in the original study all terms were associated with at least 2 synonyms,
only 574 of the terms in CoClass (40%) are associated with any synonym. Since
our goal is eventually to improve the classification system with newly discov-
ered synonyms, we did not remove synonyms that did not appear in the initially
constructed corpus, which was crawled from Trafikverkets’ publicly accessible
document database (1,100 documents) and the Swedish Wikipedia (3,7 million
articles). Only a subset of CoClass terms were found in this corpus, however.



Replicating Relevance-Ranked Synonym Discovery 7

Therefore, we devised the following strategy to construct a corpus: for each term
in CoClass, we searched the public internet for this term using the Bing Search
API5, contributing 540,409 documents to the total corpus. Since each API call
returns at most 50 hits, our budget was limited, and some terms in CoClass were
common, we used a crawling strategy focused on identifying documents contain-
ing uncommon terms. More specifically, we restricted the number of crawled
websites c based on the number of search results r for each term:

c =


2500, if r <= 10000

1000, if 10000 < r < 100000

500, if r >= 100000

(1)

Category c500 contained 494 search terms, while c1000 contained 708 and
c2500 contained 2261 search terms. Within c2500, 528 search terms produced no
hits at all. The search results demonstrate that the terminology in CoClass is
very specialized as a large amount of terms were not even found on the publicly
accessible internet.

3.2 Implementation Details

We preprocess our corpus using the efselab toolkit6 [20] to tokenize and lemma-
tize the input text. In the case of the Wikipedia and Trafikverket corpora, we
additionally perform sentence segmentation. On the Web corpus we use textract7

to identify text inside of HTML elements (e.g., between <p> and </p> tags)
and treat these text spans as sentences. We use efselab to perform part-of-speech
tagging and MaltParser [18] to perform dependency parsing for the features that
require this information. Our preprocessing differs slightly from the original work
due to the changes in our input language and corpus. The original work used a
tokenizer based on the Natural Language Toolkit8 (NLTK), the Porter stemmer,
NLTK’s part-of-speech tagging, and RASP3 [5] for dependency parsing.

The original work took advantage of large, mature domain-specific thesauri
to generate synonym candidates from the target domain. Such thesauri are not
available in our language and domain, so we were forced to consider every term
that appeared in our Wikipedia or Web corpora as a synonym candidate. We
filtered these candidates by removing terms with a low term frequency, terms
that did not appear much more often in our domain-specific Trafikverket corpus
than in Wikipedia, and terms that were not tagged as a noun by our part-of-
speech tagger. In particular, we required the candidates to have a TF of at least
300, to occur at least 30 times more often in Trafikverket than in Wikipedia,
and to be tagged as a noun at least 50% of the time. These filtering steps

5 https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-
api/

6 https://github.com/robertostling/efselab
7 https://textract.readthedocs.io
8 https://www.nltk.org/

https://github.com/robertostling/efselab
https://textract.readthedocs.io
https://www.nltk.org/


8 Yates and Unterkalmsteiner

reduced the total number of synonym candidates from approximately 867,000
to 26,000 (97% reduction) at the cost of reducing the candidates’ coverage of
true synonyms in CoClass by approximately 26% (i.e., 74% of the synonyms
remained after filtering). This left us with 290 target terms that both appeared
in our corpus and had true synonyms in our candidate list.

As in the original work, we use the logistic regression implementation from
scikit-learn9 and scale the features to unit variance. We use the LambdaMART
implementation from pyltr10 with query subsampling set to 0.5 (i.e., 50% of the
queries used to train each base learner) and the other parameters at their default
values. For the word embedding feature, we used FastText11 [3] to train 100-
dimensional embeddings on our corpus using the skipgram method. FastText’s
other parameters were kept at their default settings.

Our code, the CoClass ground truth, and the URLs of documents in our
corpus are available online.12

3.3 Experimental Setup

We conduct two experiments in which we compare the LogReg and Lamb-
daMART learning to rank methods against three baselines: PMI, EmbeddingSim,
and LinSim. In the TOEFL-style evaluation, we confirm the original study’s
conclusion that synonym discovery is best approached as a ranking problem. We
then evaluate the methods’ ability to produce useful ranked lists of synonym
candidates in the relevance ranking evaluation.

Each method receives a target term and a set of candidates as input and
outputs a ranked list of the candidates. In order to mirror the original study’s
evaluation, each target term is associated with up to 1,000 incorrect candidates
that are randomly sampled from the full set of candidates C. The supervised
methods are trained with ten-fold cross validation. We create the cross validation
folds based on target terms, so each target term appears in only one fold. We
describe the metrics used by the two evaluations in their respective sections.

3.4 General TOEFL-Style Evaluation

As in the original work, we first perform a TOEFL-style evaluation to illustrate
the difficulty of the domain-specific synonym discovery task. In this evaluation,
methods are required to identify a target term’s true synonym given one cor-
rect synonym candidate and n incorrect candidates. When n = 3 this corre-
sponds to the TOEFL evaluation commonly used in prior work on discovering
domain-independent synonyms. The original work made the argument that this
evaluation is unrealistically easy and demonstrated that, in the consumer health
domain, methods are unable to accurately identify synonyms when n is increased

9 http://scikit-learn.org
10 https://github.com/jma127/pyltr
11 https://github.com/facebookresearch/fastText/
12 https://github.com/andrewyates/ecir19-ranking-synonyms

http://scikit-learn.org
https://github.com/jma127/pyltr
https://github.com/facebookresearch/fastText/
https://github.com/andrewyates/ecir19-ranking-synonyms


Replicating Relevance-Ranked Synonym Discovery 9

0 200 400 600 800 1000
Candidates (n)

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
@

n
LambdaMART
EmbeddingSim
LogReg
PMI
LinSim

(a) TOEFL evaluation (accuracy)

0 200 400 600 800 1000
Candidates (n)

0.0

0.2

0.4

0.6

0.8

1.0

M
RR

@
n

LambdaMART
EmbeddingSim
LogReg
PMI
LinSim

(b) TOEFL evaluation (MRR)

0 200 400 600 800 1000
Candidates (n)

0.0

0.2

0.4

0.6

0.8

1.0

M
AP

LambdaMART
EmbeddingSim
LogReg
PMI
LinSim

(c) Ranking evaluation (MAP)

0 200 400 600 800 1000
Candidates (n)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
n

LambdaMART
EmbeddingSim
LogReg
LinSim
PMI

(d) Ranking evaluation (Recall@n)

Fig. 1: Results on the TOEFL-style evaluation (top row) and relevance ranking
evaluation (bottom row). While the top methods perform well in the TOEFL
evaluation for low values of n, the performance of every method decreases as n
is increased to more realistic values. The EmbeddingSim baseline performs well
on its own, but is surpassed by the LambdaMART model that incorporates it
as a feature.

to realistic values (e.g., n = 1000). In this section we repeat the general TOEFL-
style evaluation in order to demonstrate that considering only n = 3 incorrect
candidates is still unrealistically easy with our Swedish corpus focused on the
building construction domain.

For each pair consisting of a target term and a correct synonym candidate,
we randomly sample n incorrect candidates and feed the candidates as input to a
synonym discovery method. As in the original work, we aggregate each method’s
predictions to calculate accuracy@n. We additionally report MRR (Mean Re-
ciprocal Rank), which is a more informative metric because correct results in
positions past rank 1 also contribute to the score. The result are shown in Fig-
ure 1a (accuracy) and Figure 1b (MRR). While LogReg, LambdaMart, and Em-
beddingSim perform well at low values of n, their accuracy when approaching



10 Yates and Unterkalmsteiner

n = 1000 is less than 50%. The methods perform similarly in terms of MRR.
While LogReg, the method from the original work, continues to outperform PMI
and LinSim, the new EmbeddingSim baseline performs substantially better. This
may be due to the fact that LogReg is a linear model and thus has difficulty
weighting EmbeddingSim substantially higher than its other features. Lamb-
daMART, the alternate learning to rank model evaluated in this work, is able to
outperform both LogReg and EmbeddingSim. This illustrates that the synonym
discovery task remains difficult in the new domain. For use cases where recall is
important, such as ours, the task is best approached as a ranking problem.

3.5 Relevance Ranking Evaluation

In this section we evaluate the synonym discovery methods’ ability to rank syn-
onym candidates, so that they may be considered by a human editor. For each
target term, we feed every synonym candidate as input to a synonym discovery
method and calculate MAP (Mean Average Precision) and recall@n over the
resulting rankings. In the context of this task, recall@n is the more interpretable
metric: it indicates the fraction of correct synonyms that a human editor would
find after reading through the top n results. The results are shown in Figure 1c
(MAP) and Figure 1d (recall@n). In general the ranking of methods mirrors
that from the TOEFL-style evaluation, with LambdaMART performing best.
The top three methods perform similarly for different values of n, whereas PMI
and LinSim perform differently. PMI performs better for low values of n, while
LinSim begins to outperform PMI at roughly n = 175. As in the previous evalu-
ation, the new LambdaMART and EmbeddingSim methods outperform LogReg.
LambdaMART achieves 88% recall at n = 50, followed by EmbeddingSim with
82% recall and LogReg with 76% recall. This illustrates that the top performing
methods can produce a useful ranking despite their low accuracy.

3.6 Feature Analysis

In this section we evaluate the contribution of individual features to the learning
to rank models’ performance. The MAP@150 achieved by each individual fea-
ture is shown in Figure 2a. EmbeddingSim performs substantially better than
the other features. Windows, NGram, and LinSim are the only other features
to achieve a MAP above 0.3, with Decompound, LevDist, and POSNGram per-
forming poorly when used in isolation. In the original work, LevDist was the best
performing single feature, with Windows, RISim, and the dependency context
features (LinSim and Hagiwara) performing the next best. In our new domain,
Windows and LinSim continue to perform well, but LevDist and RISim perform
poorly. The difference in the domains and language may account for LevDist’s
decreased impact, since it is only a useful feature when synonym candidates have
significant character overlap with target terms. EmbeddingSim was not included
in the original work, but it is similar to RISim in that both methods are intended
to capture distributional semantics.



Replicating Relevance-Ranked Synonym Discovery 11

Decompound
LevDist

EmbeddingSim

POSNGram
RISim

Windows
NGram

LinSim

Feature Used

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
AP

(a) MAP when single features are used.

Decompound
LevDist

EmbeddingSim

POSNGram
RISim

Windows
NGram

LinSim

Feature Removed

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

Fr
ac

tio
n 

of
 O

rig
in

al
 M

AP

LogReg
LambdaMART

(b) MAP (fraction of max) when single
features are excluded from the model.

Fig. 2: MAP@150 when only one feature is used (left) and the fraction of the en-
tire model’s MAP@150 when a single feature is excluded from the model (right).
LevDist, the strongest feature in the original work, appears to have less utility
in the new setting. Windows and LinSim, strong features in the original work,
continue to perform well here.

We analyze the decrease in each model’s performance when a single feature
is removed in Figure 2b. The y-axis indicates each method’s MAP as a frac-
tion of the original MAP after a feature is removed. For example, removing the
EmbeddingSim feature reduces the performance of both LambdaMART and Lo-
gReg to 85-90% of their MAPs when all features are used. With the exception
of LevDist and EmbeddingSim, the LambdaMART model consistently achieves
a smaller decrease in performance when any single feature is removed. As in
the single feature analysis, EmbeddingSim is the best performing feature, and
RISim does not contribute much to the models’ performance. While POSNGram
performed poorly in isolation, removing the feature decreases the performance
of LogReg by approximately 12%, indicating that it is providing a useful sig-
nal used in conjunction with other features. Similarly, removing Decompound or
LevDist decreases LogReg’s or LambdaMART’s performance by approximately
2.5%, respectively, despite the fact that they performed poorly as single features.

4 Generalizability

In order to better understand the generalizability of the learning to rank ap-
proach to synonym discovery, we discuss differences between this study and the
original one in terms of the methodology and results.

Corpus Creation. Due to its focus on identifying synonyms of medical side
effects, the original study used a corpus of 400,000 English forum posts related
to health. In this study we focused on Swedish language synonyms in the build-
ing construction domain. This is a formal, specialized domain in comparison to



12 Yates and Unterkalmsteiner

health-related social media, which made it more difficult to identify documents
containing target terms or synonym candidates. To create a corpus with suf-
ficient term co-occurrence information, we created a Swedish language corpus
that was both larger and less homogeneous than the corpus used in the orig-
inal study: 4.2 million Webpages from Wikipedia, the Swedish Transportation
Agency (Trafikverket), and searches against the Bing API.

Preprocessing. While the preprocessing details differed in this study due to
the change in languages, the techniques used were conceptually similar to those
used in the original study. We use MaltParser in place of RASP3, and efselab’s
tokenization and lemmatizer in place of NLTK and the Porter stemmer.

Features and Method. We introduced two new features that were not present
in the original study. Motivated by prior work that showed decompounding can
improve recall in the German language [4], we introduced the Decompounder
feature. This feature uses the SECOS decompounder [16] to split compound
nouns into their components and measures the overlap between a target term’s
and candidate term’s components. Figure 2b suggests that this feature slightly
contributes to the performance of the LogReg method, but does not positively
influence the performance of LambdaMART. EmbeddingSim, which computes
the similarity between FastText embeddings, is the second new feature we in-
troduced. FastText considers character n-grams when representing terms, which
may make the Decompound feature redundant. We additionally introduced ex-
periments on a new learning to rank model, LambdaMART, in order to compare
its performance with the LogReg model used in the original work. We found that
LambdaMART substantially outperformed LogReg, indicating the utility of us-
ing a more advanced model. We found that methods generally performed better
on our domain and corpus. For example, LogReg achieved 50% recall@50 in the
original study, whereas it achieves 76% recall@50 in this work. It is difficult to
attribute these performance differences to specific factors, with the language, do-
main, and language register (i.e., professional language in this study and casual,
lay language in the original study) all differing between the two studies.

5 Conclusions

In this work we replicated the synonym discovery method proposed by Yates
et al. [25] in a new language (i.e., Swedish rather than English) and in a new
domain (i.e., building construction rather than medical side effects). We found
that in the new domain, the proposed LogReg method outperformed the PMI
baseline as before. Motivated by methodological advances and the difference in
languages, we introduced two new features and an alternate learning to rank
method which we found to outperform the original approach.

These results provide evidence that (1) synonym discovery can be effectively
approached as a learning to rank problem and (2) the features proposed in the
original work are robust to changes in both domain and language. While our
replication cannot provide evidence that the new EmbeddingSim feature works



Replicating Relevance-Ranked Synonym Discovery 13

well in other settings, it does provide evidence that EmbeddingSim does not
make the features used in the original work obsolete.

References

1. Building construction – Organization of information about construction works –
Part 2: Framework for classification. Tech. Rep. 12006-2:2015, ISO (May 2015),
https://www.iso.org/standard/61753.html

2. CoClass (Sep 2018), https://coclass.byggtjanst.se/en/about
3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with

subword information. Transactions of the Association for Computational Linguis-
tics 5, 135–146 (2017)

4. Braschler, M., Ripplinger, B.: How effective is stemming and decompounding for
german text retrieval? Information Retrieval 7(3), 291–316 (Sep 2004)

5. Briscoe, T., Carroll, J., Watson, R.: The second release of the rasp system. In:
Proceedings of the COLING/ACL on Interactive Presentation Sessions. COLING-
ACL ’06 (2006)

6. Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview. Tech.
Rep. MSR-TR-2010-82 (2010)

7. Carpineto, C., Romano, G.: A survey of automatic query expansion in information
retrieval. ACM Computing Surveys (CSUR) 44(1), 1 (2012)

8. Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary prob-
lem in human-system communication. Communications of the ACM 30(11), 964–
971 (1987)

9. Goodman, S.N., Fanelli, D., Ioannidis, J.P.: What does research reproducibility
mean? Science Translational Medicine 8(341) (2016)

10. Hagiwara, M.: A supervised learning approach to automatic synonym identification
based on distributional features. In: Proceedings Annual Meeting of the Associa-
tion for Computational Linguistics on Human Language Technologies: Student
Research Workshop. pp. 1–6. ACM (2008)

11. Haiduc, S., Bavota, G., Marcus, A., Oliveto, R., De Lucia, A., Menzies, T.: Auto-
matic query reformulations for text retrieval in software engineering. In: Proceed-
ings International Conference on Software Engineering (ICSE). pp. 842–851. IEEE
(2013)

12. Kang, Y., Li, J., Yang, J., Wang, Q., Sun, Z.: Semantic analysis for enhanced
medical retrieval. In: International Conference on Systems, Man, and Cybernetics
(SMC). pp. 1121–1126. IEEE (Oct 2017)

13. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons
learned from word embeddings. Transactions of the Association for Computational
Linguistics 3 (2015)

14. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the
17th international conference on Computational linguistics-Volume 2. pp. 768–774.
Association for Computational Linguistics (1998)

15. Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links
in software artifact management systems using information retrieval methods.
ACM Transactions on Software Engineering and Methodology (TOSEM) 16(4),
13 (2007)

16. Martin Riedl, C.B.: Unsupervised compound splitting with distributional semantics
rivals supervised methods. In: Proceedings of The 15th Annual Conference of the

https://www.iso.org/standard/61753.html
https://coclass.byggtjanst.se/en/about


14 Yates and Unterkalmsteiner

North American Chapter of the Association for Computational Linguistics: Human
Language Technologie. pp. 617–622. San Diego, CA, USA (2016)

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

18. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S.,
Marsi, E.: Maltparser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering 13(2), 95–135 (2007)

19. Oard, D.W., Baron, J.R., Hedin, B., Lewis, D.D., Tomlinson, S.: Evaluation of
information retrieval for e-discovery. Artificial Intelligence and Law 18(4), 347–
386 (Dec 2010)

20. Östling, R.: Part of speech tagging: Shallow or deep learning? Northern European
Journal of Language Technology (NEJLT) 5, 1–15 (2018)

21. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532–1543 (2014), http://www.aclweb.org/anthology/D14-1162

22. Stanojević, M.: Cognitive synonymy: A general overview. Facta universitatis-series:
Linguistics and Literature 7(2), 193–200 (2009)

23. Terra, E., Clarke, C.L.: Frequency estimates for statistical word similarity mea-
sures. In: Proceedings Conference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language Technology. pp. 165–172.
AMC (2003)

24. Widdows, D., Cohen, T.: The semantic vectors package: New algorithms and public
tools for distributional semantics. In: Semantic computing (icsc), 2010 ieee fourth
international conference on. pp. 9–15. IEEE (2010)

25. Yates, A., Goharian, N., Frieder, O.: Relevance-ranked domain-specific synonym
discovery. In: Advances in Information Retrieval - 36th European Conference on
IR Research. ECIR ’14 (2014)

26. Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., Ma, J.: Learning to cluster web search
results. In: Proceedings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. pp. 210–217. SIGIR ’04
(2004)

27. Zhang, L., Li, L., Li, T.: Patent mining: a survey. ACM SIGKDD Explorations
Newsletter 16(2), 1–19 (2015)

http://www.aclweb.org/anthology/D14-1162

	Replicating Relevance-Ranked Synonym Discovery in a New Language and Domain

