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Abstract. Meta-data from photo-sharing websites such as Flickr can
be used to obtain rich bag-of-words descriptions of geographic locations,
which have proven valuable, among others, for modelling and predicting
ecological features. One important insight from previous work is that the
descriptions obtained from Flickr tend to be complementary to the struc-
tured information that is available from traditional scientific resources.
To better integrate these two diverse sources of information, in this paper
we consider a method for learning vector space embeddings of geographic
locations. We show experimentally that this method improves on existing
approaches, especially in cases where structured information is available.
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1 Introduction

Users of photo-sharing websites such as Flickr3 often provide short textual de-
scriptions in the form of tags to help others find the images. Besides, for a
large number of Flickr photos, the latitude and longitude coordinates have been
recorded as meta-data. The tags associated with such georeferenced photos often
describe the location where these photos were taken, and Flickr can thus be re-
garded as a source of environmental information. The use of Flickr for modelling
urban environments has already received considerable attention. For instance,
various approaches have been proposed for modelling urban regions [5], and for
identifying points-of-interest [45] and itineraries [7, 36]. However, the usefulness
of Flickr for characterizing the natural environment, which is the focus of this
paper, is less well-understood.

Many recent studies have highlighted that Flickr tags capture valuable eco-
logical information, which can be used as a complementary source to more tra-
ditional sources. To date, however, ecologists have mostly used social media to
conduct manual evaluations of image content with little automated exploitation
of the associated tags [39, 6, 10]. One recent exception is [21], where bag-of-words

3 http://www.flickr.com



2 S. Jeawak et al.

representations derived from Flickr tags were found to give promising result for
predicting a range of different environmental phenomena.

Our main hypothesis in this paper is that by using vector space embeddings
instead of bag-of-words representations, the ecological information which is im-
plicitly captured by Flickr tags can be utilized in a more effective way. Vector
space embeddings are representations in which the objects from a given domain
are encoded using relatively low-dimensional vectors. They have proven useful in
natural language processing, especially for encoding word meaning [30, 34], and
in machine learning more generally. In this paper, we are interested in the use
of such representations for modelling geographic locations. Our main motivation
for using vector space embeddings is that they allow us to integrate the textual
information we get from Flickr with available structured information in a very
natural way. To this end, we rely on an adaptation of the GloVe word embedding
model [34], but rather than learning word vectors, we learn vectors representing
locations. Similar to how the representation of a word in GloVe is determined by
the context words surrounding it, the representation of a location in our model
is determined by the tags of the photos that have been taken near that location.
To incorporate numerical features from structured environmental datasets (e.g.
average temperature), we associate with each such feature a linear mapping that
can be used to predict that feature from a given location vector. This is inspired
by the fact that salient properties of a given domain can often be modelled as di-
rections in vector space embeddings [17, 8, 40]. Finally, evidence from categorical
datasets (e.g. land cover types) is taken into account by requiring that locations
belonging to the same category are represented using similar vectors, similar to
how semantic types are sometimes modelled in the context of knowledge graph
embedding [16].

While our point-of-departure is a standard word embedding model, we found
that the off-the-shelf GloVe model performed surprisingly poorly, meaning that
a number of modifications are needed to achieve good results. Our main findings
are as follows. First, given that the number of tags associated with a given loca-
tion can be quite small, it is important to apply some kind of spatial smoothing,
i.e. the importance of a given tag for a given location should not only depend
on the occurrences of the tag at that location, but also on its occurrences at
nearby locations. To this end, we use a formulation which is based on spatially
smoothed version of pointwise mutual information. Second, given the wide di-
versity in the kind of information that is covered by Flickr tags, we find that
term selection is in some cases critical to obtain vector spaces that capture the
relevant aspects of geographic locations. For instance, many tags on Flickr refer
to photography related terms, which we would normally not want to affect the
vector representation of a given location4. Finally, even with these modifications,
vector space embeddings learned from Flickr tags alone are sometimes outper-
formed by bag-of-words representations. However, our vector space embeddings

4 One exception is perhaps when we want to predict the scenicness of a given location,
where e.g. terms that are related to professional landscape photography might be a
strong indicator of scenicness.
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lead to substantially better predictions in cases where structured (scientific) in-
formation is also taken into account. In this sense, the main value of using vector
space embeddings in this context is not so much about abstracting away from
specific tag usages, but rather about the fact that such representations allow us
to integrate textual, numerical and categorical features in a much more natural
way than is possible with bag-of-words representations.

The remainder of this paper is organized as follows. In the next section,
we provide a discussion of existing work. Section 3 then presents our model
for embedding geographic locations from Flickr tags and structured data. Next,
in Section 4 we provide a detailed discussion about the experimental results.
Finally, Section 5 summarizes our conclusions.

2 Related Work

2.1 Vector space embeddings

The use of low-dimensional vector space embeddings for representing objects
has already proven effective in a large number of applications, including natural
language processing (NLP), image processing, and pattern recognition. In the
context of NLP, the most prominent example is that of word embeddings, which
represent word meaning using vectors of typically around 300 dimensions. A large
number of different methods for learning such word embeddings have already
been proposed, including Skip-gram and the Continuous Bag-of-Words (CBOW)
model [30], GloVe [34], and fastText [13]. They have been applied effectively in
many downstream NLP tasks such as sentiment analysis [43], part of speech
tagging [35, 28], and text classification [26, 12]. The model we consider in this
paper builds on GloVe, which was designed to capture linear regularities of word-
word co-occurrence. In GloVe, there are two word vectors wi and w̃j for each
word in the vocabulary, which are learned by minimizing the following objective:

J =

V∑
i,j=1

f(xij)(wi.w̃j + bi + b̃j − log xij)
2

where xij is the number of times that word i appears in the context of word

j, V is the vocabulary size, bi is the target word bias, b̃j is the context word
bias. The weighting function f is used to limit the impact of rare terms. It is
defined as 1 if x > xmax and as ( x

xmax
)α otherwise, where xmax is usually fixed

to 100 and α to 0.75. Intuitively, the target word vectors wi correspond to the
actual word representations which we would like to find, while the context word
vectors w̃j model how occurrences of j in the context of a given word i affect
the representation of this latter word. In this paper we will use a similar model,
which will however be aimed at learning location vectors instead of the target
word vectors.

Beyond word embeddings, various methods have been proposed for learning
vector space representations from structured data such as knowledge graphs [2,
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52, 44], social networks [15, 48] and taxonomies [47, 31]. The idea of combining a
word embedding model with structured information has also been explored by
several authors, for example to improve the word embeddings based on informa-
tion coming from knowledge graphs [50, 42]. Along similar lines, various lexicons
have been used to obtain word embeddings that are better suited at modelling
sentiment [43] and antonymy [33], among others. The method proposed by [27]
imposes the condition that words that belong to the same semantic category are
closer together than words from different categories, which is somewhat similar
in spirit to how we will model categorical datasets in our model.

2.2 Embeddings for geographic information

The problem of representing geographic locations using embeddings has also at-
tracted some attention. An early example is [41], which used principal component
analysis and stacked autoencoders to learn low-dimensional vector representa-
tions of city neighbourhoods based on census data. They use these represen-
tations to predict attributes such as crime, which is not included in the given
census data, and find that in most of the considered evaluation tasks, the low-
dimensional vector representations lead to more faithful predictions than the
original high-dimensional census data.

Some existing works combine word embedding models with geographic coor-
dinates. For example, in [4] an approach is proposed to learn word embeddings
based on the assumption that words which tend to be used in the same geo-
graphic locations are likely to be similar. Note that their aim is dual to our aim
in this paper: while they use geographic location to learn word vectors, we use
textual descriptions to learn vectors representing geographic locations.

Several methods also use word embedding models to learn representations of
Points-of-Interest (POIs) that can be used for predicting user visits [11, 29, 55].
These works use the machinery of existing word embedding models to learn POI
representations, intuitively by letting sequences of POI visits by a user play the
role of sequences of words in a sentence. In other words, despite the use of word
embedding models, many of these approaches do not actually consider any tex-
tual information. For example, in [29] the Skip-gram model is utilized to create a
global pattern of users’ POIs. Each location was treated as a word and the other
locations visited before or after were treated as context words. They then use a
pair-wise ranking loss [49] which takes into account the user’s location visit fre-
quency to personalize the location recommendations. The methods of [29] were
extended in [55] to use a temporal embedding and to take more account of geo-
graphic context, in particular the distances between preferred and non-preferred
neighboring POIs, to create a “geographically hierarchical pairwise preference
ranking model”. Similarly, in [53] the CBOW model was trained with POI data.
They ordered POIs spatially within the traffic-based zones of urban areas. The
ordering was used to generate characteristic vectors of POI types. Zone vectors
represented by averaging the vectors of the POIs contained in them, were then
used as features to predict land use types. In the CrossMap method [54] they
learned embeddings for spatio-temporal hotspots obtained from social media
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data of locations, times and text. In one form of embedding, intended to en-
able reconstruction of records, neighbourhood relations in space and time were
encoded by averaging hotspots in a target location’s spatial and temporal neigh-
borhoods. They also proposed a graph-based embedding method with nodes of
location, time and text. The concatenation of the location, time and text vectors
were then used as features to predict peoples’ activities in urban environments.
Finally, in [51], a method is proposed that uses the Skip-gram model to represent
POI types, based on the intuition that the vector representing a given POI type
should be predictive of the POI types that found near places of that type.

Our work is different from these studies, as our focus is on representing
locations based on a given text description of that location (in the form of Flickr
tags), along with numerical and categorical features from scientific datasets.

2.3 Analyzing Flickr tags

Many studies have focused on analyzing Flickr tags to extract useful informa-
tion in domains such as linguistics [9], geography [5, 14], and ecology [1, 21, 22].
Most closely related to our work, [21] found that the tags of georeferenced Flickr
photos can effectively supplement traditional scientific environmental data in
tasks such as predicting climate features, land cover, species occurrence, and
human assessments of scenicness. To encode locations, they simply combine a
bag-of-words representation of geographically nearby tags with a feature vector
that encodes associated structured scientific data. They found that the predic-
tive value of Flickr tags is roughly on a par with that of the scientific datasets,
and that combining both types of information leads to significantly better re-
sults than using either of them alone. As we show in this paper, however, their
straightforward way of combining both information sources, by concatenating
the two types of feature vectors, is far from optimal.

Despite the proven importance of Flickr tags, the problem of embedding
Flickr tags has so far received very limited attention. To the best of our knowl-
edge, [18] is the only work that generated embeddings for Flickr tags. However,
their focus was on learning embeddings that capture word meaning (being eval-
uated on word similarity tasks), whereas we use such embeddings as part of our
method for representing locations.

3 Model Description

In this section, we introduce our embedding model, which combines Flickr tags
and structured scientific information to represent a set of locations L. The pro-
posed model uses Adagrad to minimize the following objective:

J = αJtags + (1− α)Jnf + βJcat (1)

where α ∈ [0, 1] and β ∈ [0,+∞] are parameters to control the importance of
each component in the model. Component Jtags will be used to constrain the
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representation of the locations based on their textual description (i.e. Flickr
tags), Jnf will be used to constrain the representation of the locations based
on their numerical features, and Jcat will impose the constraint that locations
belonging to the same category should be close together in the space. We will
discuss each of these components in more detail in the following sections.

3.1 Tag Based Location Embedding

Many of the tags associated with Flickr photos describe characteristics of the
places where these photos were taken [19, 37, 38]. For example, tags may cor-
respond to place names (e.g. Brussels, England, Scandinavia), landmarks (e.g.
Eiffel Tower, Empire State Building) or land cover types (e.g. mountain, for-
est, beach). To allow us to build location models using such tags, we collected
the tags and meta-data of 70 million Flickr photos with coordinates in Europe
(which is the region our experiments will focus on), all of which were uploaded
to Flickr before the end of September 2015. In this section we first explain how
tags can be weighted to obtain bag-of-words representations of locations from
Flickr. Subsequently we describe a tag selection method, which will allow us to
specialize the embedding depending on which aspects of the considered locations
are of interest, after which we discuss the actual embedding model.

Tag weighting. Let L = {l1, ..., lm} be a set of geographic locations, each
characterized by latitude and longitude coordinates. To generate a bag-of-words
representation of a given location, we have to weight the relevance of each tag
to that location. To this end, we have followed the weighting scheme from [21],
which combines a Gaussian kernel (to model spatial proximity) with Positive
Pointwise Mutual Information (PPMI) [3, 32].

Let us write Ut,l for the set of users who have assigned tag t to a photo with
coordinates near l. To assess how relevant t is to the location l, the number of
times t occurs in photos near l is clearly an important criterion. However, rather
than simply counting the number of occurrences within some fixed radius, we
use a Gaussian kernel to weight the tag occurrences according to their distance
from that location:

w(t, l) =
∑

d(l,r)≤D

|Ut,l| · exp
(
−
d2
(
l, r
)

2σ2

)
where the threshold D > 0 is assumed to be fixed, r is the location of a Flickr
photo, d is the Haversine distance, and we will assume that the bandwidth
parameter σ is set to D/3. A tag occurrence is counted only once for all photos
by the same user at the same location, which is important to reduce the impact
of bulk uploading. The value w(t, l) reflects how frequent tag t is near location l,
but it does not yet take into account the total number of tag occurrences near l,
nor how popular the tag t is overall. To measure how strongly tag t is associated
with location l, we use PPMI, which is a commonly used measure of association
in natural language processing. However, rather than estimating PPMI scores
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from term frequencies, we will use the w(t, l) values instead:

PPMI(t, l) = max

(
0, log

(
pt,l
ptpl

))
where:

pt,l =
w(t, l)

N
pt =

∑
l′∈L w(t, l′)

N
N =

∑
t′∈T

∑
l′∈L

w(t′, l′) pl =

∑
t′∈T w(t′, l)

N

with T the set of all tags, and L the set of locations.

Tag selection. Inspired by [25], we use a term selection method in order to
focus on the tags that are most important for the tasks that we want to consider
and reduce the impact of tags that might relate only to a given individual or a
group of users. In particular, we obtained good results with a method based on
Kullback-Leibler (KL) divergence, which is based on [46]. Let C1, ..., Cn be a set
of (mutually exclusive) properties of locations in which we are interested (e.g.
land cover categories). For the ease of presentation, we will identify Ci with the
set of locations that have the corresponding property. Then, we select tags from
T that maximize the following score:

KL(t) =

n∑
i=1

P (Ci|t) log
P (Ci|t)
Q(Ci)

where P (Ci|t) is the probability that a photo with tag t has a location near Ci
and Q(Ci) is the probability that an arbitrary tag occurrence is assigned to a
photo near a location in Ci. Since P (Ci|t) often has to be estimated from a small
number of tag occurrences, it is estimated using Bayesian smoothing:

P (Ci|t) =

(∑
l∈Ci

w(t, l)
)

+ γ ·Q(Ci)

N + γ

where γ is a parameter controlling the amount of smoothing, which will be tuned
in the experiments. On the other hand, for Q(Ci) we can simply use a maximum
likelihood estimation:

Q(Ci) =

∑
l∈Ci

∑
t∈T w(t, l)∑n

j=1

∑
l∈Cj

∑
t∈T w(t, l)

Location embedding. We now want to find a vector vli ∈ V for each location

li such that similar locations are represented using similar vectors. To achieve
this, we use a close variant of the GloVe model, where tag occurrences are treated
as context words of geographic locations. In particular, with each location l we
associate a vector vl and with each tag t we associate a vector w̃t and a bias
term b̃tj , and consider the following objective (which in our full model (1) will be
combined with components that are derived from the structured information):

Jtags =
∑
li∈L

∑
tj∈T

(vliw̃tj + b̃tj − PPMI(tj , li))
2



8 S. Jeawak et al.

Note how tags play the role of the context words in the GloVe model, but
instead of learning target word vectors we now learn location vectors. In contrast
to GloVe, our objective does not directly refer to co-occurrence statistics, but
instead uses the PPMI scores. One important consequence is that we can also
consider pairs (li, tj) for which tj does not occur in li at all; such pairs are usually
called negative examples. While they cannot be used in the standard GloVe
model, some authors have already reported that introducing negative examples
in variants of GloVe can lead to improvements [20]. In practice, evaluating the
full objective above would not be computationally feasible, as we may need to
consider millions of locations and tags. Therefore, rather than considering all
tags in T for the inner summation, we only consider those tags that appear at
least once near location li together with a sample of negative examples.

3.2 Structured Environmental Data

There is a wide variety of structured data that can be used to describe locations.
In this work, we have restricted ourselves to the same datasets as [21]. These
include nine (real-valued) numerical features, which are latitude, longitude, ele-
vation5, population6, and five climate7 related features (avg. temperature, avg.
precipitation, avg. solar radiation, avg. wind speed, and avg. water vapor pres-
sure). In addition, 180 categorical features were used, which are CORINE8 land
cover classes at level 1 (5 classes), level 2 (15 classes) and level 3 (44 classes) and
116 soil types (SoilGrids9). Note that each location should belong to exactly 4
categories: one CORINE class at each of the three levels and a soil type.

Numerical features. Numerical features can be treated similarly to the tag
occurrences, i.e. we will assume that the value of a given numerical feature can
be predicted from the location vectors using a linear mapping. In particular, for
each numerical feature fk we consider a vector w̃fk and a bias term ˜bfk , and the
following objective:

Jnf =
∑
li∈L

∑
fk∈NF

(vli .w̃fk + ˜bfk − score(fk, li))
2

where we write NF for set of all numerical features and score(fk, li) is the value
of feature fk for location li, after z-score normalization.

Categorical features. To take into account the categorical features, we impose
the constraint that locations belonging to the same category should be close
together in the space. To formalize this, we represent each category type catl as
a vector wcatl , and consider the following objective:

Jcat =
∑
li∈R

∑
catl∈C

(vli − wcatl)2

5 http://www.eea.europa.eu/data-and-maps/data/eu-dem
6 http://data.europa.eu/89h/jrc-luisa-europopmap06
7 http://worldclim.org
8 http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2
9 https://www.soilgrids.org
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4 Experimental Results

Evaluation Tasks. We will use the method from [21] as our main baseline. This
will allow us to directly evaluate the effectiveness of embeddings for the consid-
ered problem, since we have used the same structured datasets and same tag
weighting scheme. For this reason, we will also follow their evaluation method-
ology. In particular, we will consider three classification tasks:

1. Predicting the distribution of 100 species across Europe, using the European
network of nature protected sites Natura 200010 dataset as ground truth. For
each of these species, a binary classification problem is considered. The set
of locations L is defined as the 26,425 distinct sites occurring in the dataset.

2. Predicting soil type, again each time treating the task as a binary classifica-
tion problem, using the same set of locations L as in the species distribution
experiments. For these experiments, none of the soil type features are used
for generating the embeddings.

3. Predicting CORINE land cover classes at levels 1, 2 and level 3, each time
treating the task as a binary classification problem, using the same set of
locations L as in the species distribution experiments. For these experiments,
none of the CORINE features are used for generating the embeddings.

In addition, we will also consider the following regression tasks:

1. Predicting 5 climate related features: the average precipitation, temperature,
solar radiation, water vapor pressure, and wind speed. We again use the same
set of locations L as for species distribution in this experiment. None of the
climate features is used for constructing the embeddings for this experiment.

2. Predicting people’s subjective opinions of landscape beauty in Britain, using
the crowdsourced dataset from the ScenicOrNot website11 as ground truth.
The set L is chosen as the set of locations of 191 605 rated locations from
the ScenicOrNot dataset for which at least one georeferenced Flickr photo
exists within a 1 km radius.

Experimental Setup. In all experiments, we use Support Vector Machines
(SVMs) for classification problems and Support Vector Regression (SVR) for
regression problems to make predictions from our representations of geographic
locations. In both cases, we used the SVMlight implementation12 [23]. For each
experiment, the set of locations L was split into two-thirds for training, one-sixth
for testing, and one-sixth for tuning the parameters. All embedding models are
learned with Adagrad using 30 iterations. The number of dimensions is chosen for
each experiment from {10, 50, 300} based on the tuning data. For the parameters
of our model in Equation 1, we considered values of α from {0.1, 0.01, 0.001,
0.0001} and values of β from {1, 10, 100, 1000 }.
10 http://ec.europa.eu/environment/nature/natura2000/index_en.htm
11 http://scenic.mysociety.org/
12 http://www.cs.cornell.edu/people/tj/svm_light/
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Prec Rec F1

BOW-Tags 0.57 0.11 0.18
BOW-KL(Tags) 0.11 0.86 0.19

GloVe 0.10 0.88 0.17
EGEL-Tags 0.10 0.88 0.18

EGEL-Tags+NS 0.12 0.82 0.21
EGEL-KL(Tags+NS) 0.15 0.64 0.25

BOW-All 0.65 0.50 0.56
EGEL-All 0.56 0.60 0.58

Table 1: Results for predicting species.

Prec Rec F1

BOW-Tags 0.17 0.44 0.24
BOW-KL(Tags) 0.30 0.43 0.36

GloVe 0.32 0.39 0.35
EGEL-Tags 0.32 0.40 0.36

EGEL-Tags+NS 0.30 0.44 0.36
EGEL-KL(Tags+NS) 0.32 0.44 0.37

BOW-All 0.39 0.43 0.41
EGEL-All 0.33 0.67 0.44

Table 2: Results for predicting soil type.

CORINE level 1 CORINE level 2 CORINE level 3
Prec Rec F1 Prec Rec F1 Prec Rec F1

BOW-Tags 0.49 0.45 0.47 0.20 0.13 0.16 0.14 0.08 0.10
BOW-KL(Tags) 0.40 0.47 0.43 0.39 0.12 0.18 0.24 0.13 0.17

GloVe 0.20 0.90 0.33 0.12 0.53 0.19 0.12 0.25 0.17
EGEL-Tags 0.20 0.89 0.33 0.12 0.56 0.20 0.16 0.21 0.18

EGEL-Tags+NS 0.23 0.73 0.35 0.12 0.52 0.20 0.18 0.22 0.19
EGEL-KL(Tags+NS) 0.26 0.62 0.37 0.14 0.58 0.23 0.19 0.25 0.22

BOW-All 0.52 0.51 0.51 0.27 0.19 0.22 0.18 0.11 0.13
EGEL-All 0.45 0.66 0.54 0.27 0.48 0.35 0.23 0.33 0.27

Table 3: Results for predicting CORINE land cover classes, at levels 1, 2 and 3.

To compute KL divergence, we need to determine a set of classes C1, ..., Cn for
each experiment. For classification problems, we can simply consider the given
categories, but for the regression problems we need to define such classes by
discretizing the numerical values. For the scenicness experiments, we considered
scores 3 and 7 as cut-off points, leading to three classes (i.e. less than 3, between 3
and 7, and above 7). Similarly, for each climate related features, we consider two
cut-off values for discretization: 5 and 15 for average temperature, 50 and 100
for average precipitation, 10 000 and 17 000 for average solar radiation, 0.7 and
1 for average water vapor pressure, and 3 and 5 for wind speed. The smoothing
parameter γ was selected among {10, 100, 1000} based on the tuning data. In all
experiments where term selection is used, we select the top 100 000 tags. We fixed
the radius D at 1km when counting the number of tag occurrences. Finally, we
set the number of negative examples as 10 times the number of positive examples
for each location, but with a cap at 1000 negative examples in each region for
computational reasons. We tune all parameters with respect to the F1 score for
the classification tasks, and Spearman ρ for the regression tasks.

Variants and Baseline Methods. We will refer to our model as EGEL13

(Embedding GEographic Locations), and will consider the following variants.
EGEL-Tags only uses the information from the Flickr tags (i.e. component
Jtags), without using any negative examples and without feature selection. EGEL-

13 The EGEL source code is available online at https://github.com/shsabah84/

EGEL-Model.git.
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Tags+NS is similar to EGEL-Tags but with the addition of negative exam-
ples. EGEL-KL(Tags+NS) additionally considers term selection. EGEL-All
is our full method, i.e. it additionally uses the structured information. We also
consider the following baselines. BOW-Tags represents locations using a bag-
of-words representation, using the same tag weighting as the embedding model.
BOW-KL(Tags) uses the same representation but after term selection, using
the same KL-based method as the embedding model. BOW-All combines the
bag-of-words representation with the structured information, encoded as pro-
posed in [21]. GloVe uses the objective from the original GloVe model for learn-
ing location vectors, i.e. this variant differs from EGEL-Tags in that instead
of PPMI(tj , li) we use the number of co-occurrences of tag tj near location li,
measured as |Utj li |.
Results and Discussion. We present our results for the binary classification
tasks in Tables 1–3 in terms of average precision, average recall and macro av-
erage F1 score. The results of the regression tasks are reported in Tables 4 and
5 in terms of the mean absolute error between the predicted and actual scores,
as well as the Spearman ρ correlation between the rankings induced by both
sets of scores. It can be clearly seen from the results that our proposed method
(EGEL-All) can effectively integrate Flickr tags with the available structured
information. It outperforms the baselines for all the considered tasks. Further-
more, note that the PPMI-based weighting in EGEL-Tags consistently outper-
forms GloVe and that both the addition of negative examples and term selection
lead to further improvements. The use of term selection leads to particularly
substantial improvements for the regression problems. While our experimental

Temp Precip Solar rad Water vap Wind speed
MAE ρ MAE ρ MAE ρ MAE ρ MAE ρ

BOW-Tags 1.62 0.84 11.66 0.68 926 0.83 0.08 0.71 0.54 0.75
BOW-KL(Tags) 1.69 0.81 12.85 0.65 1057 0.75 0.08 0.71 0.53 0.73

GloVe 1.96 0.44 15.37 0.31 1507 0.36 0.11 0.47 0.74 0.28
EGEL-Tags 1.95 0.47 15.03 0.31 1426 0.41 0.10 0.46 0.73 0.32

EGEL-Tags+NS 1.97 0.44 14.93 0.32 1330 0.44 0.10 0.46 0.72 0.36
EGEL-KL(Tags+NS) 1.48 0.73 13.55 0.52 1008 0.77 0.08 0.66 0.65 0.59

BOW-All 0.72 0.94 10.52 0.75 484 0.93 0.05 0.91 0.43 0.84
EGEL-All 0.71 0.95 10.03 0.79 436 0.95 0.05 0.92 0.43 0.88

Table 4: Results for predicting average climate data.

results confirm the usefulness of embeddings for predicting environmental fea-
tures, this is only consistently the case for the variants that use both the tags
and the structured datasets. In particular, comparing BOW-Tags with EGEL-
Tags, we sometimes see that the former achieves the best results. While this
might seem surprising, it is in accordance with the findings in [24, 54], among
others, where it was also found that bag-of-words representations can sometimes
lead to surprisingly effective baselines. Interestingly, we note that in all cases



12 S. Jeawak et al.

where EGEL-KL(Tags+NS) performs worse than BOW-Tags, we also find that
BOW-KL(Tags) performs worse than BOW-Tags. This suggests that for these
tasks there is a very large variation in the kind of tags that can inform the
prediction model, possibly including e.g. user-specific tags. Some of the infor-
mation captured by such highly specific but rare tags is likely to be lost in the
embedding.

To further analyze the difference in performance between BoW representa-
tions and embeddings, Figure 1 compares the performance of the GloVe model
with the bag-of-words model for predicting place scenicness, as a function of the
number of tag occurrences at the considered locations. What is clearly notice-
able in Figure 1 is that GloVe performs better than the bag-of-words model for
large corpora and worse for smaller corpora. This issue has been alleviated in
our embedding method by the addition of negative examples.

MAE ρ

BOW-Tags 1.01 0.57
BOW-KL(Tags) 1.09 0.51

GloVe 1.27 0.19
EGEL-Tags 1.12 0.37

EGEL-Tags+NS 1.14 0.40
EGEL-KL(Tags+NS) 1.05 0.53

BOW-All 1.00 0.58
EGEL-All 0.94 0.64

Table 5: Results for predicting
scenicness.

Fig. 1: Comparison between the performance
of the GloVe and bag-of-words models for pre-
dicting scenicness, as a function of the number
of tag occurrences at the considered locations.

5 Conclusions

In this paper, we have proposed a model to learn geographic location embeddings
using Flickr tags, numerical environmental features, and categorical information.
The experimental results show that our model can integrate Flickr tags with
structured information in a more effective way than existing methods, leading
to substantial improvements over baseline methods on various prediction tasks
about the natural environment.
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