Skip to main content

Tangent-V: Math Formula Image Search Using Line-of-Sight Graphs

  • Conference paper
  • First Online:
Book cover Advances in Information Retrieval (ECIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11437))

Included in the following conference series:

Abstract

We present a visual search engine for graphics such as math, chemical diagrams, and figures. Graphics are represented using Line-of-Sight (LOS) graphs, with symbols connected only when they can ‘see’ each other along an unobstructed line. Symbol identities may be provided (e.g., in PDF) or taken from Optical Character Recognition applied to images. Graphics are indexed by pairs of symbols that ‘see’ each other using their labels, spatial displacement, and size ratio. Retrieval has two layers: the first matches query symbol pairs in an inverted index, while the second aligns candidates with the query and scores the resulting matches using the identity and relative position of symbols. For PDFs, we also introduce a new tool that quickly extracts characters and their locations. We have applied our model to the NTCIR-12 Wikipedia Formula Browsing Task, and found that the method can locate relevant matches without unification of symbols or using a math expression grammar. In the future, one might index LOS graphs for entire pages and search for text and graphics. Our source code has been made publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.semanticscholar.org.

  2. 2.

    SymbolScraper: https://www.cs.rit.edu/~dprl/Software.html.

  3. 3.

    Faster algorithms may be used [7].

  4. 4.

    http://trec.nist.gov/trec_eval.

  5. 5.

    https://cs.rit.edu/~dprl/Software.html#tangent-v.

References

  1. Al-Zaidy, R.A., Giles, C.L.: Automatic extraction of data from bar charts. In: Proceedings of the 8th International Conference on Knowledge Capture, K-CAP 2015, Palisades, NY, USA, 7–10 October 2015, pp. 30:1–30:4 (2015). https://doi.org/10.1145/2815833.2816956, http://doi.acm.org/10.1145/2815833.2816956

  2. Al-Zaidy, R.A., Giles, C.L.: A machine learning approach for semantic structuring of scientific charts in scholarly documents. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, California, USA, pp. 4644–4649 (2017). http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/14275

  3. Avrithis, Y., Tolias, G.: Hough pyramid matching: speeded-up geometry re-ranking for large scale image retrieval. Int. J. Comput. Vis. 107(1), 1–19 (2014)

    Article  Google Scholar 

  4. Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277 (2015)

    Google Scholar 

  5. Baker, J., Sexton, A.P., Sorge, V.: Extracting precise data on the mathematical content of PDF documents. In: Towards a Digital Mathematics Library (DML). Masaryk University Press, Birmingham, 27 July 2008. ISBN 978-80-210-4658-0

    Google Scholar 

  6. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  7. Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  8. Cao, Y., Long, M., Liu, B., Wang, J.: Deep cauchy hashing for hamming space retrieval. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  9. Chatbri, H., Kwan, P., Kameyama, K.: An application-independent and segmentation-free approach for spotting queries in document images. In: ICPR, pp. 2891–2896. IEEE (2014)

    Google Scholar 

  10. Choudhury, S., et al.: Figure metadata extraction from digital documents. In: 12th International Conference on Document Analysis and Recognition, ICDAR 2013, pp. 135–139 (2013). https://doi.org/10.1109/ICDAR.2013.34

  11. Clark, C., Divvala, S.K.: Pdffigures 2.0: mining figures from research papers. In: Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, JCDL 2016, Newark, NJ, USA, 19–23 June 2016, pp. 143–152 (2016). https://doi.org/10.1145/2910896.2910904, http://doi.acm.org/10.1145/2910896.2910904

  12. Davila, K., Zanibbi, R.: Visual search engine for handwritten and typeset math in lecture videos and latex notes. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 50–55, August 2018. https://doi.org/10.1109/ICFHR-2018.2018.00018

  13. Davila, K., Ludi, S., Zanibbi, R.: Using off-line features and synthetic data for on-line handwritten math symbol recognition. In: ICFHR, pp. 323–328. IEEE (2014)

    Google Scholar 

  14. Davila, K., Zanibbi, R.: Layout and semantics: combining representations for mathematical formula search. In: SIGIR (2017)

    Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  16. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15

    Chapter  Google Scholar 

  17. Hu, L., Zanibbi, R.: MST-based visual parsing of online handwritten mathematical expressions. In: Proceedings of the International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China (2016, to appear)

    Google Scholar 

  18. Hu, L., Zanibbi, R.: Line-of-sight stroke graphs and parzen shape context features for handwritten math formula representation and symbol segmentation. In: ICFHR, pp. 180–186. IEEE (2016)

    Google Scholar 

  19. Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87(3), 316–336 (2010)

    Article  Google Scholar 

  20. Kristianto, G.Y., Topić, G., Aizawa, A.: The MCAT math retrieval system for NTCIR-12 MathIR task. In: Proceedings of the NTCIR-12, pp. 323–330 (2016)

    Google Scholar 

  21. Li, X., Larson, M., Hanjalic, A.: Pairwise geometric matching for large-scale object retrieval. In: CVPR, pp. 5153–5161, June 2015

    Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis, 60(2), 91–110 (2004)

    Article  Google Scholar 

  23. Mouchère, H., Zanibbi, R., Garain, U., Viard-Gaudin, C.: Advancing the state-of-the-art for handwritten math recognition: the CROHME competitions, 2011–2014. Int. J. Doc. Anal. Recogn. (IJDAR) 19(2), 173–189 (2016)

    Article  Google Scholar 

  24. Mouchère, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.: ICFHR 2016 CROHME: competition on recognition of online handwritten mathematical expressions. In: International Conference on Frontiers in Handwriting Recognition (ICFHR) (2016)

    Google Scholar 

  25. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Largescale image retrieval with attentive deep local features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3456–3465 (2017)

    Google Scholar 

  26. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp. 1–8. IEEE (2007)

    Google Scholar 

  27. Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting oxford and paris: large-scale image retrieval benchmarking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  28. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos, In: ICCV, pp. 1470–1477. IEEE (2003)

    Google Scholar 

  29. Wang, X.: Tabular Abstraction, Editing and Formatting. Ph.D. thesis, University of Waterloo, Canada (1996)

    Google Scholar 

  30. Zanibbi, R., Aizawa, A., Kohlhase, M., Ounis, I., Topić, G., Davila, K.: NTCIR-12 MathIR task overview. In: Proceedings of the NTCIR-12, pp. 299–308 (2016)

    Google Scholar 

  31. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions. IJDAR 15(4), 331–357 (2012)

    Article  Google Scholar 

  32. Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recognition: models, observations, transformations, and inferences. Int. J. Doc. Anal. Recogn. (IJDAR) 7(1), 1–16 (2004)

    Google Scholar 

  33. Zanibbi, R., Davila, K., Kane, A., Tompa, F.: Multi-stage math formula search: using appearance-based similarity metrics at scale. In: SIGIR (2016)

    Google Scholar 

  34. Zanibbi, R., Yu, L.: Math spotting: retrieving math in technical documents using handwritten query images. In: ICDAR, pp. 446–451. IEEE (2011)

    Google Scholar 

  35. Zhang, W., Ngo, C.W.: Topological spatial verification for instance search. IEEE Trans. Multimedia 17(8), 1236–1247 (2015). https://doi.org/10.1109/TMM.2015.2440997

    Article  Google Scholar 

  36. Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual phrases. In: CVPR, pp. 809–816. IEEE (2011)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Chris Bondy for his help with designing SymbolScraper. This material is based upon work supported by the National Science Foundation (USA) under Grant Nos. HCC-1218801, III-1717997, and 1640867 (OAC/DMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenny Davila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davila, K., Joshi, R., Setlur, S., Govindaraju, V., Zanibbi, R. (2019). Tangent-V: Math Formula Image Search Using Line-of-Sight Graphs. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15712-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15711-1

  • Online ISBN: 978-3-030-15712-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics