
Local Popularity and Time in top-N
Recommendation

Vito Walter Anelli1, Tommaso Di Noia1, Eugenio Di Sciascio1, Azzurra
Ragone2, and Joseph Trotta1

1 Polytechnic University of Bari, Bari, Italy
{firstname.lastname}@poliba.it

2 Independent Researcher
azzurra.ragone@gmail.com

Abstract. Items popularity is a strong signal in recommendation algo-
rithms. It strongly affects collaborative filtering approaches and it has
been proven to be a very good baseline in terms of results accuracy. Even
though we miss an actual personalization, global popularity can be effec-
tively used to recommend items to users. In this paper we introduce the
idea of a time-aware personalized popularity in recommender systems by
considering both items popularity among neighbors and how it changes
over time. An experimental evaluation shows a highly competitive behav-
ior of the proposed approach, compared to state of the art model-based
collaborative approaches, in terms of results accuracy.

1 Introduction

Collaborative-Filtering (CF) [25] algorithms, more than others, have gained a
key-role among recommendation approaches and have been effectively imple-
mented in commercial systems to help users in dealing with the information
overload problem. Some of them also use additional information (hybrid ap-
proaches) to build a more precise user profile in order to serve a much more
personalized list of items [3,9].

However, it is well known [12] that all the algorithms based on a CF ap-
proach are affected by the so called “popularity bias” meaning that popular
items tend to be recommended more frequently than those in the long tail. Ini-
tially considered as a shortcoming of collaborative filtering algorithms and then
not useful to produce good recommendations [11], in some works items popu-
larity has been intentionally penalized [17]. Very interestingly, a recommenda-
tion algorithm purely based on most popular items, has been proven to be a
strong baseline [7] although it does not exploit any actual personalization. More
recently, popularity has been also considered as a natural aspect of recommen-
dation that, by measuring the user tendency to diversification, can be exploited
to balance the recommender optimization goals [13]. The study of popularity in
user tendencies is not completely new in the recommender systems field. Some
interesting works explored these criteria for re-ranking purposes [13,17], and
multiple goals optimization [11].

In the approach we present here, we introduce a more fine-grained personal-
ized version of popularity by assuming that it is conditioned by the items that a

ar
X

iv
:1

80
7.

04
20

4v
2

 [
cs

.I
R

]
 4

 J
ul

 2
01

9

2 V.W. Anelli et al.

user u already experienced in the past. To this extent, we look at a specific class
of neighbors, that we name Precursors, defined as the users who already rated
the same items of u in the past. This led us to the introduction of a time-aware
analysis while computing a recommendation list for u. As time is considered a
contextual feature, most of the works dealing with temporal aspects are consid-
ered as a sub-class of Context-Aware RS (CARS) [2]: Time-Aware RS (TARS)
[24,1,14]. In TARS, the freshness of different ratings is often considered as a
discriminative factor between candidate items. Usually, a time window [15] is
adopted to filter out all the ratings that stand before (and/or after) a certain
time relative to the user or the item. Recently, an interesting work that makes
use of time windows has been proposed in [5] where the authors focus on the
last common interaction between the target user and her neighbors to populate
the candidate items list. In [4] social information and time are integrated deal-
ing with the interests of the users as a series of temporal matrices. Probabilistic
matrix factorization technique are adopted to learn latent factors. Regarding
sequences and recommendation it is worth to mention [22], in which the authors
combine an LSTM network with a low-rank matrix factorization algorithm to
produce recommendation lists. A pioneer work was proposed more than a decade
ago in [8] which used an exponential decay function e−λt to penalize old ratings.
An exponential decay function [14] was then used to integrate time in a la-
tent factors model. In the last years, several Item-kNN [16,8] with a temporal
decay function have been deployed. Another interesting work was proposed in
[23] where three different kinds of time decay were adopted: exploiting concave,
convex and linear functions.

In this paper we present TimePop, an algorithm that combines the notion of
personalized popularity conditioned to the behavior of users’ neighbors while tak-
ing into account the temporal dimension. It is worth noticing that TimePop works
with implicit feedback to compute recommendations. Differently from some of
the approaches previously described, in TimePop we avoid both the use of a time
window and the selection of a fixed number of candidate items. Indeed, while on
the one hand, a time window may severely restrict the selection of candidates,
on the other hand, a fixed number of candidate items may heavily affect the
algorithm results.

2 Time-aware Local Popularity

The leading intuition behind TimePop is that the popularity of an item has not
to be considered as a global property but it can be personalized if we consider
the popularity in a neighborhood of users. We started from this observation to
formulate a form of personalized popularity, and then we added the temporal
dimension to strengthen this idea.

In TimePop, given a user u the first step is then the identification of user’s
neighbors who rated the same items as u but before u. We name these users
Precursors. In our intuition, Precursors represent a community of users u relies
on to choose the items to enjoy. In a neighborhood of u, the same item is enjoyed
by users in different time frames. This leads us to the second ingredient behind
TimePop: personalized popularity is a function of time. The more the ratings
about an item are recent, the more its popularity is relevant for the specific user.

Local Popularity and Time in top-N Recommendation 3

Hence, in order to exploit the temporal aspect of these ratings, the contributions
of Precursors can be weighted depending on their freshness.

We now introduce some basic notation that will be used in the following. We
use u ∈ U and i ∈ I to denote users and items respectively. Since we are not just
interested in the items a user rated but also at when the rating happened, we have
that for a user u the corresponding user profile is Pu = {(i1, tui1), . . . , (in, tuin)}
with Pu ⊆ I ×<, being tui a timestamp representing when u rated i.

Definition 1 (Candidate Precursor and Precursor). Given (i, tui) ∈ Pu
and (i, tu′i) ∈ Pu′ , we say that u′ is a Candidate Precursor of u if tu′i < tui.

We use the set ¶̂u to denote the set of Candidate Precursors of u. Given two
users u′ and u such that u′ is a Candidate Precursor of u and a value τu ∈ <
we say that u′ is a Precursor of u if the following condition holds.

|{i | (i, tui) ∈ Pu ∧ (i, tu′i) ∈ Pu′ ∧ tu′i < tui)}| ≥ τu

We use ¶u to denote the set of Precursors of u.

A user u′ is a Candidate Precursor of u if u′ rated at least one common item
i before u. Although this definition catches the intuition behind the idea of
Precursors, it is a bit weak as it considers also users u′ who have only a few or
even just one item in common with u and rated them before she did. Hence,
we introduced a threshold taking somehow into account the number of common
items in order to enforce the notion of Precursors. The threshold parameter τu
in Defintion 1 can be also computed automatically as:

τu =

∑
u′∈¶̂u |{i | (i, tui) ∈ Pu ∧ (i, tu′i) ∈ Pu′ ∧ tu′i < tui)}|

|¶̂u|
(1)

To give an intuition on the computation of Precursors and of τu let us describe
the simple example shown in Figure 1.

Fig. 1: Example of Precursors computa-
tion.

Here, for the sake of simplicity, we
suppose that there are only four users
and six items and u is the user we
want to provide recommendations to.
Items that users share with u are
highlighted in blue and items with a
dashed red square are the ones that
have been rated before u. We see that
¶̂u = {u2, u4}. Indeed, although u3
rated some of the items also rated by u
they have been rated after. By Equa-
tion (1) we have τu = 3

2 = 1.5. Then,
only u2 results to be in ¶u because she has 2 > 1.5 shared items rated before
those of u. As for u3, it is more likely that u is a Precursor of u3 and not vice
versa.

Temporal decay. As the definition of Precursor goes through a temporal analysis
of user behaviors, we may look at the timestamp of the last rating provided by
a Precursor in order to identify how active she is in the system. Intuitively, the

4 V.W. Anelli et al.

contribution to popularity for users who have not contributed recently with a
rating is lower than “active” users. On the other side, given an item in the profile
of a Precursor we are interested in the freshness of its rating. As a matter of
fact, old ratings should affect the popularity of an item less than newer ratings.
Summing up, we may classify the two temporal dimensions as old/recent user
and old/recent item. In order to quantify these two dimensions for Precur-
sors we introduce the following timestamps: t0 this is the reference timestamp.
It represents the “now” in our system; tu′i is the time when u′ rated i; tu′l

represents the timestamp associated to the last item l rated by the user u′.
Different temporal variables are typically used [8,14], and they mainly focus
on old/recent items. ∆T may refer to the timestamp of the items with ref-
erence to the last rating of u′ [8] with ∆T = tu′l − tu′i or to the reference
timestamp [14] with ∆T = t0 − tu′i. As we stated before, our approach cap-
tures the temporal behavior of both old/recent users and old/recent items
at the same time. We may analyze the desired ideal behavior of ∆T depend-
ing on the three timestamps previously introduced as represented in Table 1.

recent user
(t0 ≈ tu′l)

old user
(t0 � tu′l)

recent item
(tu′l ≈ tu′i)

≈ 0 t0 − tu′l

old item
(tu′l � tu′i)

tu′l − tu′i t0 − tu′l

Table 1: Ideal values of ∆T w.r.t.
the Precursor characteristics

Let us focus on each case. In the
upper-left case we want ∆T to be as small
as possible because both u′ and the rating
for i are “recent” and then highly repre-
sentative for a popularity dimension. In
the upper-right case, the rating is recent
but the user is old. The last item has been
rated very close to i but a large value of
∆T should remain because the age of u′

penalizes the contribution. The lower-left
case denotes a user that is active on the

system but rated i a long time ago. In this case the contribution of this item is
almost equal to the age of its rating. The lower-right case is related to a scenario
in which both the rating and u′ are old. In this scenario, the differences between
the reference timestamp minus the last interaction and the reference timestamp
minus the rating of i are comparable: (t0 − tu′l) ≈ (t0 − tu′i). In this case, we
wish the contribution of ∆T to consider the elapsed time from the last inter-
action (or the rating) until the reference timestamp. All the above observations
lead us to define ∆T = |t0 − 2tu′l + tu′i|. In order to avoid different decay coef-
ficients, in our experimental evaluation, all ∆Ts are transformed in days (from
milliseconds) as a common practice.

The Recommendation Algorithm. We modeled our algorithm TimePop to
solve a top-N recommendation problem. Given a user u, TimePop computes the
recommendation list by executing the following steps:
1. Compute ¶u;
2. For each item i such that there exists u′ ∈ ¶u with (i, tu′i) ∈ Pu′ compute a
score for i by summing the number of times it appears in Pu′ multiplied by the
corresponding decay function;
3. Sort the list in decreasing order with respect to the score of each i.
For sake of completeness, in case there were no precursors for a certain user, a
recommendation list based on global popularity is returned to u. Moreover, if

Local Popularity and Time in top-N Recommendation 5

TimePop is able to compute only m scores, with m < N , the remaining items
are returned based on their value of global popularity.

3 Experimental Evaluation
In order to evaluate TimePop we tested our approach considering datasets re-
lated to different domains. Two of them related to the movie domain —the
well-known Movielens1M dataset and Amazon3 Movies — and a dataset refer-
ring to toys and games —Amazon Toys and Games, with 2M ratings and a
sparsity of 99.99949%. “All Unrated Items” [21] protocol has been chosen to
compare different algorithms where, for each user, all the items that have not
yet been rated by the user all over the platform are considered. In order to
evaluate time-aware recommender systems in an offline experimental setting, a
typical k-folds or hold-out splitting would be ineffective and unrealistic. To be as
close as possible to an online real scenario we used the fixed-timestamp splitting
method [6,10], also used in [5] but with a dataset centered base set. The basic
idea is choosing a single timestamp that represents the moment in which test
users are on the platform waiting for recommendations. Their past corresponds
to the training set, and the performance is evaluated with data coming from
their future. In this work, we select the splitting timestamp that maximizes the
number of users involved in the evaluation by setting two constraints: the train-
ing set must keep at least 15 ratings, and the test set must contain at least 5
ratings. Training set and test set for the three datasets are publicly available4

along with the splitting code for research purposes. In order to evaluate the al-
gorithms we measured normalized Discount Cumulative Gain@N (nDCG@N)
using Time-independent rating order condition [6]. The metric was computed
per user and then the overall mean was returned using the RankSys framework
and adopting Threshold-based relevant items condition [6]. The threshold used
to consider a test item as relevant has been set to the value of 4 w.r.t. a 1-5 scale
for all the three datasets.

(a) AmazonMovies (b) Movielens1M (c) AmazonToys

Fig. 2: nDCG @N varying N in 2..10

Baselines. We evaluated our approach w.r.t CF and time-aware techniques.
MostPopular was included as TimePop is a time-aware variant of “Most Pop-
ular”. From model-based collaborative filtering approaches we selected some of

3 http://jmcauley.ucsd.edu/data/amazon/
4 https://github.com/sisinflab/DatasetsSplits

http://jmcauley.ucsd.edu/data/amazon/
https://github.com/sisinflab/DatasetsSplits

6 V.W. Anelli et al.

the best performing matrix factorization algorithms WRMF trained with a reg-
ularization parameter set to 0.015, α set to 1 and 15 iterations, and FM5[25],
computed with an ad-hoc implementation of a 2 degree factorization machine
considering users and items as features, trained using Bayesian Personalized
Ranking Criterion[19]. Moreover, we compared our approach against the most
popular memory-based kNN algorithms, Item-kNN5 and User-kNN?? [20], to-
gether with their time-aware variants (Item-kNN-TD5, User-kNN-TD5)[8].
We included TimeSVD++5 [14] in our comparison even though this latter
has been explicitly designed for the rating prediction task. All model-based al-
gorithms were trained using 10, 50, 100, and 200 factors; only best models are
reported in the evaluation: for Movielens1M WRMF 10, FM 10; for Amazon
Movies WRMF 100, FM 200; for Amazon Toys and Games WRMF 100, FM 50.
Finally BFwCF [5] is an algorithm that takes into account interaction sequences
between users and it uses the last common interaction to populate the candidate
items list. In this evaluation we included the BFwCF variant that takes advan-
tage of similarity weights per user and two time windows, left-sided and right-
sided (Backward-Forward). BFwCF was trained using parameters from [5]: 100
neighbors, indexBackWards and indexForwards set to 5, normalization and com-
bination realized respectively via DummyNormalizer and SumCombiner. Rec-
ommendations were computed with the implementation publicly provided by
authors. In order to guarantee a fair evaluation, for all the time-based variants
the β coefficient was set to 1

200 [14]. TimeSVD++ was trained using parameters
used in [14].
Results Discussion. Results of experimental evaluation are shown in Figure 2
which illustrate nDCG (2a, 2b, 2c) curves for increasing number of top ranked
items returned to the user. Significance tests have been performed for accuracy
metrics using Student’s t-test and p-values and they result consistently lower
than 0.05. By looking at Figure 2a we see that TimePop outperforms compar-
ing algorithms in terms of accuracy on AmazonMovies dataset. We also see
that algorithms exploiting a Temporal decay function perform well w.r.t. their
time-unaware variants (User-kNN and Item-kNN) while matrix factorization al-
gorithms (WRMF ,TimeSVD++ and FM) perform quite bad. The low perfor-
mance of MF algorithms is very likely due to the temporal splitting that makes
them unable to exploit collaborative information. We may assume that the good
performance of TimePop w.r.t. kNN algorithms are due to the adopted threshold,
that emphasizes the popular items, and hence increases accuracy metrics values.
Results for Amazon Toys and Games dataset are analogous to those computed for
Amazon Movies. Results for Movielens additionally show that the high number
of very popular items make neighborhood-based approaches perform similarly.

4 Conclusion
In this paper we presented TimePop, a framework that exploits local popularity of
items combined with temporal information to compute top-N recommendations.
The approach relies on the computation of a set of time-aware neighbors named
Precursors that are considered the referring population for a user we want to
serve recommendations. We compared TimePop against state-of-art algorithms
showing its effectiveness in terms of accuracy despite its lower computational
cost in computing personalized recommendations.

5 https://github.com/sisinflab/recommenders

https://github.com/sisinflab/recommenders

Local Popularity and Time in top-N Recommendation 7

References
1. G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems: a data

warehousing app.roach. Electronic commerce, pp. 180–192, 2001.
2. G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. In Rec-

ommender systems handbook, pp. 217–253, 2011.
3. V. Anelli, T. Di Noia, E. Di Sciascio, and P. Lops. Feature factorization for top-n

recommendation: From item rating to features relevance. In Proc. of RecSysKTL,
pp. 16–21, 2017.

4. H. Bao, Q. Li, S. S. Liao, S. Song, and H. Gao. A new temporal and social
pmf-based method to predict users’ interests in micro-blogging. Decision Supp.ort
Systems, 55(3):698–709, 2013.

5. A. Belloǵın and P. Sánchez. Revisiting neighbourhood-based recommenders for
temporal scenarios. In Proc. of TempRec, pp. 40–44, 2017.

6. P. G. Campos, F. Dı́ez, and I. Cantador. Time-aware recommender systems: a
comprehensive survey and analysis of existing evaluation protocols. UMAI, 24(1-
2):67–119, 2014.

7. P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms
on top-n recommendation tasks. In Proc. of RecSys ’10, pp. 39–46, 2010.

8. Y. Ding and X. Li. Time weight collaborative filtering. In Proc. of CIKM ’05, pp.
485–492. ACM, 2005.

9. I. Fernández-Tob́ıas, M. Braunhofer, M. Elahi, F. Ricci, and I. Cantador. Alle-
viating the new user problem in collaborative filtering by exploiting personality
information. UMUAI, 26(2-3):221–255, 2016.

10. A. Gunawardana and G. Shani. Evaluating recommender systems. In Recom-
mender Systems Handbook, pp. 265–308. 2015.

11. T. Jambor and J. Wang. Optimizing multiple objectives in collaborative filtering.
In Proc. of RecSys ’10, pp. 55–62, 2010.

12. D. Jannach, L. Lerche, F. Gedikli, and G. Bonnin. What recommenders recommend
- an analysis of accuracy, popularity, and sales diversity effects. In Proc. of UMAP
’13, pp. 25–37, 2013.

13. M. Jugovac, D. Jannach, and L. Lerche. Efficient optimization of multiple rec-
ommendation quality factors according to individual user tendencies. Expert Syst.
App.l., 81:321–331, 2017.

14. Y. Koren. Collaborative filtering with temporal dynamics. Communications of the
ACM, 53(4):89–97, 2010.

15. N. Lathia, S. Hailes, and L. Capra. Temporal collaborative filtering with adaptive
neighbourhoods. In Proc. of SIGIR ’09, pp. 796–797, 2009.

16. N. N. Liu, M. Zhao, E. Xiang, and Q. Yang. Online evolutionary collaborative
filtering. In Proc. of RecSys ’10, pp. 95–102, 2010.

17. J. Oh, S. Park, H. Yu, M. Song, and S. Park. Novel recommendation based on
personal popularity tendency. In Proc. of ICDM ’11, pp. 507–516, 2011.

18. S. Rendle. Factorization machines. In Proc. of ICDM ’10, pp. 995–1000, 2010.
19. S. Rendle et al. BPR: bayesian personalized ranking from implicit feedback. In

Proc. of UAI ’09, pp. 452–461, 2009.
20. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation

algorithms for e-commerce. In Proc. of EC ’00, pp. 158–167, 2000.
21. H. Steck. Evaluation of recommendations: rating-prediction and ranking. In Proc.

of RecSys’13, pp. 213–220, 2013.
22. C. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. Recurrent recommender

networks. In Proc. of WSDM 2017, pp. 495–503, 2017.
23. C. Xia, X. Jiang, S. Liu, Z. Luo, and Z. Yu. Dynamic item-based recommendation

algorithm with time decay. In Proc. of ICNC ’10, pp. 242–247, 2010.
24. A. Zimdars, D. M. Chickering, and C. Meek. Using temporal data for making

recommendations. In Proc. of UAI ’01, pp. 580–588, 2001.
25. S. Rendle. Using temporal data for making recommendations. In Proc. of ICDM

’10, pp. 995–1000, 2001.

	Local Popularity and Time in top-N Recommendation

