Skip to main content

PRIN: A Probabilistic Recommender with Item Priors and Neural Models

  • Conference paper
  • First Online:
Book cover Advances in Information Retrieval (ECIR 2019)

Abstract

In this paper, we present PRIN, a probabilistic collaborative filtering approach for top-N recommendation. Our proposal relies on continuous bag-of-words (CBOW) neural model. This fully connected feedforward network takes as input the item profile and produces as output the conditional probabilities of the users given the item. With that information, our model produces item recommendations through Bayesian inversion. The inversion requires the estimation of item priors. We propose different estimates based on centrality measures on a graph that models user-item interactions. An exhaustive evaluation of this proposal shows that our technique outperforms popular state-of-the-art baselines regarding ranking accuracy while showing good values of diversity and novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.irlab.org/alfonso.landin/prin.

  2. 2.

    http://grouplens.org/datasets/movielens.

  3. 3.

    http://webscope.sandbox.yahoo.com.

References

  1. Anthonisse, J.: The rush in a directed graph. Stichting Mathematisch Centrum. Mathematische Besliskunde (BN 9/71), January 1971

    Google Scholar 

  2. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997). https://doi.org/10.1145/245108.245124

    Article  Google Scholar 

  3. Barkan, O., Koenigstein, N.: Item2vec: neural item embedding for collaborative filtering. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6, September 2016. https://doi.org/10.1109/MLSP.2016.7738886

  4. Bavelas, A., Barrett, D.: An Experimental Approach to Organizational Communication. American Management Association (1951)

    Google Scholar 

  5. Bellogín, A., Cantador, I., Díez, F., Castells, P., Chavarriaga, E.: An empirical comparison of social, collaborative filtering, and hybrid recommenders. ACM Trans. Intell. Syst. Technol. 4(1), 1–29 (2013). https://doi.org/10.1145/2414425.2414439

    Article  Google Scholar 

  6. Bellogín, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recommender systems. In: Proceedings of the 5th ACM Conference on Recommender systems, RecSys 2011, pp. 333–336. ACM, New York (2011). https://doi.org/10.1145/2043932.2043996

  7. Bellogin, A., Parapar, J.: Using graph partitioning techniques for neighbour selection in user-based collaborative filtering. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys 2012, pp. 213–216. ACM, New York (2012). https://doi.org/10.1145/2365952.2365997

  8. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014). https://doi.org/10.1080/15427951.2013.865686

    Article  MathSciNet  Google Scholar 

  9. Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27(1), 55–71 (2005). https://doi.org/10.1016/j.socnet.2004.11.008

    Article  MathSciNet  Google Scholar 

  10. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on Top-N recommendation tasks. In: Proceedings of the 4th ACM Conference on Recommender Systems, RecSys 2010, pp. 39–46. ACM, New York (2010). https://doi.org/10.1145/1864708.1864721

  11. Fleder, D., Hosanagar, K.: Blockbuster culture’s next rise or fall: the impact of recommender systems on sales diversity. Manage. Sci. 55(5), 697–712 (2009). https://doi.org/10.1287/mnsc.1080.0974

    Article  Google Scholar 

  12. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977). https://doi.org/10.2307/3033543

    Article  Google Scholar 

  13. de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 119–159. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_4

    Chapter  Google Scholar 

  14. Grbovic, M., et al.: E-commerce in your inbox: Product recommendations at scale. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 1809–1818. ACM, New York (2015). https://doi.org/10.1145/2783258.2788627

  15. Guy, I.: Social recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 511–543. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_15

    Chapter  Google Scholar 

  16. Harris, Z.S.: Distributional structure. WORD 10(2–3), 146–162 (1954). https://doi.org/10.1080/00437956.1954.11659520

    Article  Google Scholar 

  17. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 173–182. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2017). https://doi.org/10.1145/3038912.3052569

  18. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272. IEEE, Washington (2008). https://doi.org/10.1109/ICDM.2008.22

  19. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953). https://doi.org/10.1007/BF02289026

    Article  MATH  Google Scholar 

  20. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999). https://doi.org/10.1145/324133.324140

    Article  MathSciNet  MATH  Google Scholar 

  21. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_3

    Chapter  Google Scholar 

  22. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning, pp. 1188–1196. Proceedings of Machine Learning Research, PMLR, Bejing, China, 22–24 June 2014

    Google Scholar 

  23. Liang, D., Altosaar, J., Charlin, L., Blei, D.M.: Factorization meets the item embedding: regularizing matrix factorization with item co-occurrence. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys 2016, pp. 59–66. ACM, New York (2016). https://doi.org/10.1145/2959100.2959182

  24. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. CoRR abs/1301.3, January 2013

    Google Scholar 

  25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems 26, NIPS 2013, pp. 3111–3119. Curran Associates, Inc. (2013)

    Google Scholar 

  26. Ning, X., Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 37–76. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_2

    Chapter  Google Scholar 

  27. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, November 1999

    Google Scholar 

  28. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, pp. 1532–1543. ACL, Stroudsburg (2014). https://doi.org/10.3115/v1/D14-1162

  29. Phaisangittisagul, E.: An Analysis of the regularization between L2 and dropout in single hidden layer neural network. In: Proceedings of the 7th International Conference on Intelligent Systems, Modelling and Simulation, ISMS 2016, pp. 174–179. IEEE (2016). https://doi.org/10.1109/ISMS.2016.14

  30. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI Press, Arlington (2009)

    Google Scholar 

  31. Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance tests for information retrieval evaluation. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, CIKM 2007, p. 623. ACM, New York (2007). https://doi.org/10.1145/1321440.1321528

  32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014). https://doi.org/10.1214/12-AOS1000

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.Y.: A theoretical analysis of NDCG ranking measures. In: Proceedings of the 26th Annual Conference on Learning Theory, COLT 2013, pp. 1–30. JMLR.org (2013)

    Google Scholar 

  34. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  35. Zhou, T., Kuscsik, Z., Liu, J.G., Medo, M., Wakeling, J.R., Zhang, Y.C.: Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Nat. Acad. Sci. 107(10), 4511–4515 (2010). https://doi.org/10.1073/pnas.1000488107

    Article  Google Scholar 

Download references

Acknowledgments

This work has received financial support from project TIN2015-64282-R (MINECO/ERDF) and accreditation ED431G/01 (Xunta de Galicia/ERDF). The first author acknowledges the support of grant FPU17/03210 (MICIU) and the second author acknowledges the support of grant FPU014/01724 (MICIU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Landin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landin, A., Valcarce, D., Parapar, J., Barreiro, Á. (2019). PRIN: A Probabilistic Recommender with Item Priors and Neural Models. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15712-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15711-1

  • Online ISBN: 978-3-030-15712-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics