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Abstract. Popularity is a critical success factor for a politician and
her/his party to win in elections and implement their plans. Finding
the reasons behind the popularity can provide a stable political move-
ment. This research attempts to measure popularity in Twitter using a
mixed method. In recent years, Twitter data has provided an excellent
opportunity for exploring public opinions by analyzing a large number
of tweets. This study has collected and examined 4.5 million tweets re-
lated to a US politician, Senator Bernie Sanders. This study investigated
eight economic reasons behind the senator’s popularity in Twitter. This
research has benefits for politicians, informatics experts, and policymak-
ers to explore public opinion. The collected data will also be available
for further investigation.

Keywords: Opinion mining · Popularity analysis · Text mining · Social
media.

1 Introduction

Social media play an important role in politics and people show their political
Internet activity by posting and sharing their opinions [37]. This communication
technology has been bringing more citizens into the political process and has
provided a personal accessible level through the posted political information
[33]. For example, the percentage of US adults got news from social media has
increased from 49% in the 2012 US election to 62% in the 2016 US election [14].
Considering the impact of social media on their public’s impression, politicians
have utilized this new communication technology [17].

Twitter with 80 million US users has been considered as one of the top social
media platforms. For instance, former president of Chile has asked the members
of his cabinet to use Twitter [53] and Hillary Clinton has officially announced
her campaign in Twitter [60]. More than 80 million US Twitter users is a great
motivation for local and regional campaigns to analyze tweets [52]. Most politi-
cians have a Twitter account and many have a social media team to manage
their Twitter account. For example, Barack Obama had a team with 100 staff
to work on his social media such as Twitter during his campaign [16]. Besides,
there is a new trend that politicians such as Donald Trump have started writing
their tweets themselves to have more exciting and informal communications [43].

ar
X

iv
:1

81
2.

03
25

8v
1 

 [
st

at
.A

P]
  8

 D
ec

 2
01

8



2 A. Karami and A. Elkouri

Public opinion poll is an essential tool in politics. To collect data measuring
public opinion, traditional opinion polls use different methods such as face-to-
face interview, and phone interview [9]. However, the conventional approaches
are labor-intensive and time-consuming. Social media with millions of users and
messages per day is a big focus group to mine public opinion [51]. Among social
media, Twitter with millions of tweets per day has provided a cost-effective data
access platform for collecting millions of tweets containing feelings and opinions
to facilitate social media research [48]. Twitter data has been used in different
political applications election analysis [20] and non-political applications such as
business [15], libraries [8,21], social bot analysis [32], and health like analyzing
diabetes, diet, obesity [22,49], exercise [50], LGBT health [62,28]. However, this
data has not been considered for popularity analysis.

The popularity of a politician is an critical success factor for the politician
and her/his party to win in elections and implement their plans. Finding the
reasons behind the popularity can provide a stable political movement. This
research investigates Twitter data using computational methods to understand
the most important reasons behind a politician’s reputation. For our case study,
we selected a popular US politician, Bernie Sanders [54]. He received the highest
amount of small donations from American people in the 2016 US presidential
primary election and his campaign has raised more money than Donald Trump’s
campaign [55]. Although our approach can detect different reasons behind a
politician’s popularity, we focus on economic issues, as it was the most important
issue for the 2016 US voters [40].

2 Related Work

The fast growth of Twitter and its large-scale public available have drawn the
attention of researchers for political applications of Twitter data in three di-
rections: (1) social movement analysis, (2) election prediction, and (3)election
analysis. Two examples of the first direction are exploring the role of social me-
dia in organizing protesters [56,1,5] and studying the behavior of protesters in
social media and its effect on social movements [59,58]. The second direction
has adopted quantitative methods to determine the popularity of candidates
[57,6,12] and find the most popular candidate and predict the elections [2,47].
The third research category attempts to investigate an election at a macro level
such as studying the social media strategy [34] or analyzing economic factors
[20].

Although previous studies have provided valuable insights into political pro-
cesses, there is a need to find the essential reasons behind a politician’s popu-
larity. This paper addresses this gap by applying a mixed method on millions of
tweets.
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3 Methodology and Results

This research proposes a popularity analysis framework with four steps using two
text mining techniques including sentiment analysis and topic modeling along
with qualitative coding.

3.1 Data Collection

We used Twitter4j, a Twitter Java API (Application Programming Interfaces),
to collect data using four queries: “@berniesanders,” “bernie AND sanders”,
“sanders”, and “#sanders”. The tweets were collected from January 1, 2016 to
July 31, 2016. The collected data will be publicly available in the first author’s
websites1.

3.2 Sentiment Analysis

We used Linguistic Inquiry and Word Count (LIWC) tool [39] having good
sensitivity value, specificity value, and English proficiency measure [13,31,30,29]
for sentiment analysis. Using LIWC, we found 2.1 million positive, 1.7 million
negative, and 700,000 neutral tweets. Fig. 1 shows two positive tweets discussing
free education and minimum wage. To maintain user privacy, we have lightly
edited the represented tweets in this paper to avoid detection.

“I agree with Sanders that American can make all public university tuition-
free”

“Happy with the candidate who fights for minimum wage”

Fig. 1. A Sample of Positive Tweets

3.3 Semantic Analysis

The third part of our analysis detects main topics discussed by Twitter users
during a time frame. Our approach is based on the assumption that people show
their support with positive feelings in their tweets. Analyzing a large number
of documents like the tweets in our dataset needs computational methods for
processing high dimensional data [23,19,27]. This step applies a topic model to
find discussed topics in the detected positive tweets. Latent Dirichlet allocation
(LDA) is the most popular and effective general probabilistic topic model to
group related words in a corpus [35,24,25,26].

LDA assumes that each tweet in a corpus contains a mixture of topics and
each topic is a distribution of the corpus’s words [4,18]. For example, this model
assigns “gene,” “dna,” and “genetic” to a topic with Genetics theme (Figure 2).

1https://github.com/amir-karami/Sanders-Tweets-Data

https://github.com/amir-karami/Sanders-Tweets-Data
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Fig. 2. An Example fo LDA [3]

After removing the duplicate tweets, retweets, and the tweets containing a
URL to retrieve pure personal opinion, we found 307,237 positive tweets. We
applied a Java implementation of LDA, Mallet [36], with its default settings and
stopwords list to disclose the topics of the 307,237 positive tweets. Using log-
likelihood estimation method to identify the optimum number of topics [61], 175
topics were selected as the optimum number of topics.

3.4 Topic Analysis

The popularity analysis approach of this research is based on detecting essential
reasons. According to the surveys of Gallup and Pew Research Center, the econ-
omy was the most critical issue not only in the 2016 election but also in the 2004,
2008, and 2012 US elections [7,44,45,40]. In the 2016 US election, Economic was
considered in ten dimensions: Jobs & Income, Trade & Globalization, Taxes,
Entitlement, National Debt, Immigration, Infrastructure, Monetary Policy &
The Federal Reserve, Pay for College, and Minimum Wage. Then we started to
the qualitative analysis to identified economic-related topics and labeled them.
The authors separately removed nonrelevant topics, either because they were
not economic-related topics such as climate change and minorities rights or they
were not understandable. By reviewing the top related words such the ones in
Table 2, we agreed upon assigning single or multiple label(s) based on the ten
economic dimensions for each of the relevant topics. For example, we assigned
Minimum Wage label to a topic containing ‘Minimum Wage” label to a topic
containing “feelthebern”, “wage”, “support”, “minimum”, and “workers”.

We also explored the distribution of labels to determine the importance of
topics for supporters. Table 3 shows that the total weight of the top three rea-
sons, 71%, was more than the total weight of the rest of the reasons, 29%. Pay
for college, jobs & income, and entitlement were the top three reasons behind
Sanders’s popularity. This result confirms the result of a survey plan [42].
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Table 2. A Sample of Sanders’s Topics

Jobs & Income Trade & Globalization Taxes Entitlement

bernie berniesanders berniesanders care
sanders free tax universal

job trade back feelthebern
leverage increase millions people
economy deals taxes berniesanders

Immigration Monetary Policy & The
Federal Reserve

Pay for College Minimum Wage

bernie wall free feelthebern
sanders street college wage
reform berniesanders berniesanders supports

immigration money tuition minimum
good arguing public workers

Table 3. Distribution of Economic Positive Topics

Economic Issue Distribution(%) Rank

College 28.8% 1

Jobs & Income 22.1% 2

Entitlement 20.3% 3

Trade & Globalization 8.4% 4

Minimum Wage 6.8% 5

Monetary Policy & The Federal Reserve 6.8% 5

Taxes 5.1% 7

Immigration 1.7% 8

Infrastructure 0% NA

National Debt 0% NA

The second reason behind the popularity was a plan to raise a national min-
imum wage . This plan is also in line with traditional surveys [10,11]. Although
jobs & income and the minimum wage were considered as independent issues, we
found an overlap between these two issues. In this case, if we assume that these
two reasons represent a single cause, the importance of the combination of these
two reasons, 28.9%, is similar to the importance of the pay for college reason,
28.8%. The next reason was entitlement including healthcare and social secu-
rity that were also in favor of US majority [46,38]. Considering the next reason,
traditional polls have shown that most Americans were not in favor of the 2016
trade policies and had supported renegotiating major trades [41]. We found that
taxes and immigration were the least important reasons for Sander’s popularity.
This study did not find topics covering national debt and infrastructure issues.

4 Discussion

This study applied a mixed method for popularity analysis in social media. There
are some key finding informed by this research. First, users don’t assign the same
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weight for all the economic issues. Further, two issues were not among the leading
economic concerns of users. Second, college tuition, jobs, and income were the
main concerns in the 2016 US election. Third, findings show that the potential
of this paper for large-scale social media studies. Fourth, the proposed method
can be used with traditional surveys to provide a comprehensive perspective for
political events. Fifth, we think that this study has other applications such as
analyzing and tracking positive and negative comments for business purposes
like the stock market. Finally, the flexibility of the mixed method can help to
utilize other computational and qualitative methods.

5 Conclusion

This study seeks to the analysis of the economic reasons behind the public’s
positive feeling. To address the research question, we used a mixed method to
develop a popularity analysis approach considering ten economic dimensions. We
applied our approach to a massive number of tweets mentioned a popular US
politician in 2016 and 2017 to understand the reasons for his popularity. This
paper can help politicians, public opinion analysts, knowledge discovery experts,
and social scientists to understand people’s opinions better.

This study has two limitations. First, the data was collected from one single
social media source. Collecting data from other social media such as Facebook
can represent more population and opinions. Second, while we considered English
tweets, the location of the users was not considered in this analysis. To address
these limitations, we will collect data from other social media platforms and
consider location of users in our future research.
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