Skip to main content

Enhancement and De-Noising of OCT Image by Adaptive Wavelet Thresholding Method

  • Chapter
  • First Online:

Abstract

This chapter proposed an adaptive wavelet thresholding method for enhancement and de-noising of retinal optical coherence tomography (OCT) image. Speckle noise degrades the OCT image and affects the disease diagnostic utility. OCT image enhancement is required for accurate analysis of inter and intra retinal layers. Enhancement is achieved through histogram mapping called Gaussianization transform. Further wavelet coefficients are modeled statistically to get the signal and noise information for finding the threshold value for weighing the wavelet coefficients. A Cauchy distribution is used to model the wavelet coefficients. An adaptive soft thresholding is used to estimate the true wavelet coefficients. Gaussianization transform widen the intensity range and enhances the OCT image and de-noising performances. Through different performance parameters, it is demonstrated that the proposed method outperforms the state-of-the-art methods. The proposed de-noising method has achieved 4.67% improvement in Peak Signal-to-Noise Ratio (PSNR), 2.61% in Structural Similarity (SSIM), 1.33% in Correlation coefficient (CoC) and 9.4% in Edge Preservation Index (EPI) parameters than the adaptive soft thresholding method, designed without statistical modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sahu, S., Singh, H.V., Kumar, B. and Singh, A.K., Statistical Modeling and Gaussianization Procedure based de-speckling algorithm for Retinal OCT images, Journal of Ambient Intelligence and Humanized Computing (AIHC), an International Journal of Springer. DOI: https://doi.org/10.1007/s12652-018-0823-2

  2. Zaki, F., Wang, Y., Yuan, X. and Liu, X., 2017, June. Adaptive Wavelet Thresholding for Optical Coherence Tomography Image Denoising. In Computational Optical Sensing and Imaging (pp. CTh4B-4). Optical Society of America.

    Google Scholar 

  3. Anantrasirichai, N., Nicholson, L., Morgan, J.E., Erchova, I., Mortlock, K., North, R.V., Albon, J. and Achim, A., 2014. Adaptive-weighted bilateral filtering and other pre-processing techniques for optical coherence tomography. Computerized Medical Imaging and Graphics, 38(6), pp.526-539.

    Article  Google Scholar 

  4. Kim, J., Miller, D. T., Kim, E., Oh, S., Oh, J., & Milner, T. E. (2005). Optical Coherence Tomography Speckle Reduction by a Partially Spatially Coherent Source. Journal of Biomedical Optics, 10(6), 064034-064034.

    Google Scholar 

  5. Pircher, M., Go, E., Leitgeb, R., Fercher, A. F., & Hitzenberger, C. K. (2003). Speckle reduction in optical coherence tomography by frequency compounding. Journal of Biomedical Optics, 8(3), 565-569.

    Google Scholar 

  6. Iftimia, N., Bouma, B. E., & Tearney, G. J. (2003). Speckle reduction in optical coherence tomography by path length encoded angular compounding. Journal of Biomedical Optics, 8(2), 260-263.

    Google Scholar 

  7. Ghafaryasl, B., Baart, R., de Boer, J.F., Vermeer, K.A. and van Vliet, L.J., 2017, February. Automatic estimation of retinal nerve fiber bundle orientation in SD-OCT images using a structure-oriented smoothing filter. In Medical Imaging 2017: Image Processing (Vol. 10133, p. 101330C). International Society for Optics and Photonics.

    Google Scholar 

  8. Zhang, A., Xi, J., Sun, J. and Li, X., 2017. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images. Biomedical optics express, 8(3), pp.1721-1730.

    Article  Google Scholar 

  9. Tang, C., Cao, L., Chen, J. and Zheng, X., 2017. Speckle noise reduction for optical coherence tomography images via non-local weighted group low-rank representation. Laser Physics Letters, 14(5), p.056002.

    Article  Google Scholar 

  10. Esmaeili, M., Dehnavi, A.M., Rabbani, H. and Hajizadeh, F., 2017. Speckle noise reduction in optical coherence tomography using two-dimensional curvelet-based dictionary learning. Journal of medical signals and sensors, 7(2), p.86.

    Google Scholar 

  11. Adabi, S., Rashedi, E., Conforto, S., Mehregan, D., Xu, Q. and Nasiriavanaki, M., 2017, February. Speckle reduction of OCT images using an adaptive cluster-based filtering. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI (Vol. 10053, p. 100532X). International Society for Optics and Photonics.

    Google Scholar 

  12. Kato, Y., Kuroki, N., Hirose, T. and Numa, M., 2016. Locally weighted averaging for denoising of medical tomographic images. Journal of Signal Processing, 20(4), pp.217-220.

    Article  Google Scholar 

  13. Rajabi, H. and Zirak, A., 2016. Speckle noise reduction and motion artifact correction based on modified statistical parameters estimation in OCT images. Biomedical Physics & Engineering Express, 2(3), p.035012.

    Article  Google Scholar 

  14. Duan, J., Lu, W., Tench, C., Gottlob, I., Proudlock, F., Samani, N.N. and Bai, L., 2016. Denoising optical coherence tomography using second order total generalized variation decomposition. Biomedical Signal Processing and Control, 24, pp.120-127.

    Article  Google Scholar 

  15. Baghaie, A., D’souza, R.M. and Yu, Z., 2016. Application of independent component analysis techniques in speckle noise reduction of retinal OCT images. Optik-International Journal for Light and Electron Optics, 127(15), pp.5783-5791.

    Article  Google Scholar 

  16. Kim, K.S., Park, H.J. and Kang, H.S., 2015. Enhanced optical coherence tomography imaging using a histogram-based denoising algorithm. Optical Engineering, 54(11), p.113110.

    Article  Google Scholar 

  17. Thapa, D., Raahemifar, K. and Lakshminarayanan, V., 2015. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method. Journal of Modern Optics, 62(21), pp.1856-1864.

    Article  MathSciNet  Google Scholar 

  18. Aum, J., Kim, J.H. and Jeong, J., 2015. Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels. Applied Optics, 54(13), pp.D43-D50.

    Article  Google Scholar 

  19. Duan, J., Tench, C., Gottlob, I., Proudlock, F. and Bai, L., 2015. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images. Physics in Medicine & Biology, 60(22), p.8901.

    Article  Google Scholar 

  20. Avanaki, M.R., Marques, M.J., Bradu, A., Hojjatoleslami, A. and Podoleanu, A.G., 2014, March. A new algorithm for speckle reduction of optical coherence tomography images. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII (Vol. 8934, p. 893437). International Society for Optics and Photonics.

    Google Scholar 

  21. Bian, L., Suo, J., Chen, F. and Dai, Q., 2015. Multiframe denoising of high-speed optical coherence tomography data using interframe and intraframe priors. Journal of biomedical optics, 20(3), p.036006.

    Article  Google Scholar 

  22. Gyger, C., Cattin, R., Hasler, P.W. and Maloca, P., 2014. Three-dimensional speckle reduction in optical coherence tomography through structural guided filtering. Optical Engineering, 53(7), p.073105.

    Article  Google Scholar 

  23. Cheng, J., Duan, L., Wong, D.W.K., Akiba, M. and Liu, J., 2014, August. Speckle reduction in optical coherence tomography by matrix completion using bilateral random projection. In Engineering in Medicine and Biology Society (EMBC), 2014 36th annual international conference of the IEEE (pp. 186-189). IEEE.

    Google Scholar 

  24. Thapa, D., Raahemifar, K. and Lakshminarayanan, V., 2014, August. A new efficient dictionary and its implementation on retinal images. In Digital Signal Processing (DSP), 2014 19th International Conference on (pp. 841-846). IEEE.

    Google Scholar 

  25. Chen, Q., de Sisternes, L., Leng, T. and Rubin, D.L., 2015. Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images. Journal of digital imaging, 28(3), pp.346-361.

    Article  Google Scholar 

  26. Xu, J., Ou, H., Lam, E.Y., Chui, P.C. and Wong, K.K., 2013. Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage. Optics letters, 38(15), pp.2900-2903.

    Article  Google Scholar 

  27. Guo, Q., Dong, F., Sun, S., Lei, B. and Gao, B.Z., 2013. Image denoising algorithm based on contourlet transform for optical coherence tomography heart tube image. IET image processing, 7(5), pp.442-450.

    Article  Google Scholar 

  28. Luan, F. and Wu, Y., 2013. Application of RPCA in optical coherence tomography for speckle noise reduction. Laser Physics Letters, 10(3), p.035603.

    Article  Google Scholar 

  29. Cao, J., Wang, P., Wu, B., Shi, G., Zhang, Y., Li, X., Zhang, Y. and Liu, Y., 2018. Improved wavelet hierarchical threshold filter method for optical coherence tomography image de-noising. Journal of Innovative Optical Health Sciences, 11(03), p.1850012.

    Article  Google Scholar 

  30. Sahu, S., Singh, H. V., Kumar, B., & Singh, A. K. (2017). De-noising of ultrasound image using Bayesian approached heavy-tailed Cauchy distribution. Multimedia Tools and Applications, 1-18.

    Google Scholar 

  31. Sahu, S., Singh, H. V., Kumar, B., & Singh, A. K. A Bayesian Multiresolution Approach for Noise Removal in Medical Magnetic Resonance Images. Journal of Intelligent Systems.

    Google Scholar 

  32. Bhuiyan, M. I. H., Ahmad, M. O., & Swamy, M. N. S. (2007). Spatially adaptive wavelet-based method using the Cauchy prior for denoising the SAR images. IEEE Transactions on Circuits and Systems for Video Technology, 17(4), 500-507.

    Google Scholar 

  33. Amini, Z., & Rabbani, H. (2016). Statistical modeling of retinal optical coherence tomography. IEEE transactions on medical imaging, 35(6), 1544-1554.

    Google Scholar 

  34. Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE transactions on information theory, 41(3), 613-627.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, S., Singh, H.V., Kumar, B., Singh, A.K., Kumar, P. (2019). Enhancement and De-Noising of OCT Image by Adaptive Wavelet Thresholding Method. In: Singh, A., Mohan, A. (eds) Handbook of Multimedia Information Security: Techniques and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-15887-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15887-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15886-6

  • Online ISBN: 978-3-030-15887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics