Skip to main content

Discovering Senile Dementia from Brain MRI Using Ra-DenseNet

  • Conference paper
  • First Online:
  • 2096 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Abstract

With the rapid development of medical industry, there is a growing demand for disease diagnosis using machine learning technology. The recent success of deep learning brings it to a new height. This paper focuses on application of deep learning to discover senile dementia from brain magnetic resonance imaging (MRI) data. In this work, we propose a novel deep learning model based on Dense convolutional Network (DenseNet), denoted as ResNeXt Adam DenseNet (Ra-DenseNet), where each block of DenseNet is modified using ResNeXt and the adapter of DenseNet is optimized by Adam algorithm. It compresses the number of the layers in DenseNet from 121 to 40 by exploiting the key characters of ResNeXt, which reduces running complexity and inherits the advantages of Group Convolution technology. Experimental results on a real-world MRI data set show that our Ra-DenseNet achieves a classification accuracy with 97.1\(\%\) and outperforms the existing state-of-the-art baselines (i.e., LeNet, AlexNet, VGGNet, ResNet and DenseNet) dramatically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fang, C., Li, C., Cabrerizo, M., et al.: A Gaussian discriminant analysis-based generative learning algorithm for the early diagnosis of mild cognitive impairment in Alzheimer’s disease. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 538–542 (2017)

    Google Scholar 

  2. Gray, K.R., Aljabar, P., Heckemann, R.A., et al.: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage 65, 167–175 (2013)

    Article  Google Scholar 

  3. Harman, D.: Alzheimer’s disease pathogenesis. Ann. N. Y. Acad. Sci. 1067, 454–560 (2007)

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Huang, G., Liu, Z., Weinberger, K.Q., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 4700–4708 (2017)

    Google Scholar 

  6. Hon, M., Khan, N.M: Towards Alzheimer’s disease classification through transfer learning. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 1166–1169 (2017)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)

    Google Scholar 

  8. Kong, W., Mou, X., Hu, X.: Exploring matrix factorization techniques for significant genes identification of Alzheimers disease microarray gene expression data. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, vol. 12, no. 5, p. S7 (2011)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105 (2012)

    Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Liu, M., Zhang, D., Shen, D.: Ensemble sparse classification of Alzheimer’s disease. Neuroimage 60(2), 1106–1116 (2012)

    Article  Google Scholar 

  12. Liu, Y.: Magnetic resonance imaging. In: Current Laboratory Methods in Neuroscience Research, pp. 249–270 (2013)

    Google Scholar 

  13. Liu, F., Wee, C.Y., Chen, H., et al.: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84, 466–475 (2014)

    Article  Google Scholar 

  14. Liu, Q., Chen, C., Gao, A., et al.: VariFunNet, an integrated multiscale modeling framework to study the effects of rare non-coding variants in genome-wide association studies: applied to Alzheimer’s disease. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 2177–2182 (2017)

    Google Scholar 

  15. Luo, Y.M., Weng, H., Zhang, L., et al.: Salt restriction: recognition and treatment of chronic kidney disease related edema in ancient literature mining. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 1369–1375 (2017)

    Google Scholar 

  16. Marcus, D., Wang, T., Parker, J., et al.: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adult. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  17. Milletari, F., Ahmadi, S.-A., Kroll, C., et al.: Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput. Vis. Image Underst. 164, 92–102 (2017)

    Article  Google Scholar 

  18. Moradi, E., Pepe, A., Gaser, C., et al.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015)

    Article  Google Scholar 

  19. Nichols, T.E., Das, S., Eickhoff, S.B., et al.: Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20(3), 299–303 (2017)

    Article  Google Scholar 

  20. Panda, A.K., Kumar, M., Chaudhary, M.K., et al.: Brain tumour extraction from MRI images using k-means clustering. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 4(4), 356–359 (2016)

    Google Scholar 

  21. Peng, Y., Tang, C., Chen, G., et al.: Multi-label learning by exploiting label correlations for TCM diagnosing Parkinson’s disease. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 590–594 (2017)

    Google Scholar 

  22. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Sorg, C., Riedl, V., Muhlau, M., et al.: Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. 104(47), 18760–18765 (2007)

    Article  Google Scholar 

  25. Sutskever, I., Martens, J., Dahl, G., et al.: On the importance of initialization and momentum in deep learning. In: Proceedings of the International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  26. Tahmasian, M., Shao, J., Meng, C., et al.: Based on the network degeneration hypothesis: separating individual patients with different neurodegenerative syndromes in a preliminary hybrid PET/MR study. J. Nucl. Med. 57, 410–415 (2016)

    Article  Google Scholar 

  27. Tang, X., Hu, X., Yang, X., et al.: A algorithm for identifying disease genes by incorporating the subcellular localization information into the protein-protein interaction networks. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 308–311 (2016)

    Google Scholar 

  28. Tong, T., Gray, K., Gao, Q., et al.: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion. Pattern Recogn. 63, 171–181 (2017)

    Article  Google Scholar 

  29. Xie, S., Girshick, R., Doll\(\acute{a}\)r, P., et al.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995 (2017)

    Google Scholar 

  30. Young, J., Modat, M., Cardoso, M.J., et al.: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. NeuroImage: Clin. 2, 735–745 (2013)

    Article  Google Scholar 

  31. Zhang, D., Wang, Y., Zhou, L., et al.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3), 856–867 (2011)

    Article  Google Scholar 

  32. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59(2), 60–67 (2012)

    MathSciNet  Google Scholar 

  33. Zhang, X., Yang, Y., Wang, H., et al.: Analysis of senile dementia from the brain magnetic resonance imaging data with clustering. In: Proceedings of the 13th International FLINS Conference (FLINS 2018) and Intelligent Systems and Knowledge Engineering (ISKE 2018), pp. 1454–1461 (2018)

    Google Scholar 

  34. Zhu, X., Suk, H.I., Wang, L., et al.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 38, 205–214 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61572407) and the Seeding Project of Scientific and Technological Innovation in Sichuan Province of China (No. 2018102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Yang, Y., Li, T., Wang, H., He, Z. (2019). Discovering Senile Dementia from Brain MRI Using Ra-DenseNet. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics