Skip to main content

Granger Causality for Heterogeneous Processes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Abstract

Discovery of temporal structures and finding causal interactions among time series have recently attracted attention of the data mining community. Among various causal notions graphical Granger causality is well-known due to its intuitive interpretation and computational simplicity. Most of the current graphical approaches are designed for homogeneous datasets i.e. the interacting processes are assumed to have the same data distribution. Since many applications generate heterogeneous time series, the question arises how to leverage graphical Granger models to detect temporal causal dependencies among them. Profiting from the generalized linear models, we propose an efficient Heterogeneous Graphical Granger Model (HGGM) for detecting causal relation among time series having a distribution from the exponential family which includes a wider common distributions e.g. Poisson, gamma. To guarantee the consistency of our algorithm we employ adaptive Lasso as a variable selection method. Extensive experiments on synthetic and real data confirm the effectiveness and efficiency of HGGM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    I.e. the resulting sequence of estimates does not have to converge in probability to the optimal solution for variable selection under certain conditions (Sect. 2 in [20]).

  2. 2.

    http://www.dwd.de/DE/Home/home_node.html.

  3. 3.

    http://www.bnlearn.com/documentation.

  4. 4.

    https://www.zamg.ac.at.

References

  1. Arnold, A., Liu, Y., Abe, N.: Temporal causal modelling with graphical Granger methods. In: KDD (2007)

    Google Scholar 

  2. Bacsó, N.: Das Klima des Donauraumes. Geoforum (1971)

    Google Scholar 

  3. Bahadori, M.T., Liu, Y.: Granger causality analysis in irregular time series. In: SDM (2012)

    Google Scholar 

  4. Budhathoki, K., Vreeken, J.: Causal inference by compression. In: ICDM (2016)

    Google Scholar 

  5. Budhathoki, K., Vreeken, J.: MDL for causal inference on discrete data. In: ICDM (2017)

    Google Scholar 

  6. Budhathoki, K., Vreeken, J.: Causal inference on event sequences. In: SDM (2018)

    Google Scholar 

  7. Cheng, D., Bahadori, M.T., Liu, Y.: FBLG: a simple and effective approach for temporal dependence discovery from time series data. In: KDD (2014)

    Google Scholar 

  8. Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 424–438 (1969)

    Google Scholar 

  9. Kim, S., Putrino, D., Ghosh, S., Brown, E.: A Granger causality measure for point process models of ensemble neural spiking activity. PLOS Comput. Biol. 7, 1–13 (2011)

    MathSciNet  Google Scholar 

  10. Marx, A., Vreeken, J.: Causal inference on multivariate and mixed-type data. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS, vol. 11052, pp. 655–671. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10928-8_39

    Chapter  Google Scholar 

  11. McIlhagga, W.: penalized: a MATLAB toolbox for fitting generalized linear models with penalties. J. Stat. Softw. (2016). Articles

    Google Scholar 

  12. Mooij, J.M., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.: Distinguishing cause from effect using observational data: methods and benchmarks. J. Mach. Learn. Res. 17, 1103–1204 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Nelder, J.A., Baker, R.J.: Generalized linear models. In: Encyclopedia of Statistical Sciences (1972)

    Google Scholar 

  14. Peters, J., Janzing, D., Schölkopf, B.: Causal inference on discrete data using additive noise models. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2436–2450 (2011)

    Article  Google Scholar 

  15. Qiu, H., Liu, Y., Subrahmanya, N.A., Li, W.: Granger causality for time-series anomaly detection. In: ICDM (2012)

    Google Scholar 

  16. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461 (2000)

    Article  Google Scholar 

  17. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(Oct), 2003–2030 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Shojaie, A., Michailidis, G.: Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 26, i517–i523 (2010)

    Article  Google Scholar 

  19. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Zou, H.: The adaptive Lasso and its Oracle property. J. Am. Stat. Assoc. 101, 1418–1429 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Behzadi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 2414 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behzadi, S., Hlaváčková-Schindler, K., Plant, C. (2019). Granger Causality for Heterogeneous Processes. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics