Skip to main content

Knowledge Graph Rule Mining via Transfer Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Abstract

Mining logical rules from knowledge graphs (KGs) is an important yet challenging task, especially when the relevant data is sparse. Transfer learning is an actively researched area to address the data sparsity issue, where a predictive model is learned for the target domain from that of a similar source domain. In this paper, we propose a novel method for rule learning by employing transfer learning to address the data sparsity issue, in which most relevant source KGs and candidate rules can be automatically selected for transfer. This is achieved by introducing a similarity in terms of embedding representations of entities, relations and rules. Experiments are conducted on some standard KGs. The results show that proposed method is able to learn quality rules even with extremely sparse data and its predictive accuracy outperformed state-of-the-art rule learners (AMIE+ and RLvLR), and link prediction systems (TransE and HOLE).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and knowledge graphs. In: Proceedings of IJCAI, pp. 2–10 (2017)

    Google Scholar 

  2. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of WWW, pp. 697–706 (2007)

    Google Scholar 

  3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Proceedings of ISWC, pp. 722–735 (2007)

    Google Scholar 

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of SIGMOD, pp. 1247–1250 (2008)

    Google Scholar 

  5. Pujara, J., Augustine, E., Getoor, L.: Sparsity and noise: where knowledge graph embeddings fall short. In: Proceedings of EMNLP, pp. 1751–1756 (2016)

    Google Scholar 

  6. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  7. Barati, M., Bai, Q., Liu, Q.: SWARM: an approach for mining semantic association rules from semantic web data. In: Booth, R., Zhang, M.-L. (eds.) PRICAI 2016. LNCS (LNAI), vol. 9810, pp. 30–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42911-3_3

    Chapter  Google Scholar 

  8. Wang, Z., Li, J.-Z.: RDF2Rules: learning rules from RDF knowledge bases by mining frequent predicate cycles. CoRR abs/1512.07734 (2015)

    Google Scholar 

  9. Chen, Y., Wang, D.Z., Goldberg, S.: ScaLeKB: scalable learning and inference over large knowledge bases. VLDB J. 25, 893–918 (2016)

    Article  Google Scholar 

  10. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 707–730 (2015)

    Article  Google Scholar 

  11. Omran, P.G., Wang, K., Wang, Z.: Scalable rule learning via learning representation. In: Proceedings of IJCAI, pp. 2149–2155 (2018)

    Google Scholar 

  12. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3, 9 (2016)

    Article  Google Scholar 

  13. Pan, S.J., Yang, Q.: A survey on transfer learning. TKDE 22, 1345–1359 (2010)

    Google Scholar 

  14. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. CoRR abs/1412.6575 (2015)

    Google Scholar 

  15. Neelakantan, A., Roth, B., McCallum, A.: Compositional vector space models for knowledge base inference. In: Proceedings of AAAI Spring Symposia (2015)

    Google Scholar 

  16. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  17. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of AAAI, pp. 1955–1961 (2016)

    Google Scholar 

  18. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: Proceedings of ICML, pp. 809–816 (2011)

    Google Scholar 

  19. Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via knowledge embeddings. In: Proceedings of IJCAI, pp. 4258–4264 (2017)

    Google Scholar 

  20. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Proceedings of NIPS, pp. 2316–2325 (2017)

    Google Scholar 

  21. Van Haaren, J., Kolobov, A., Davis, J.: TODTLER: two-order-deep transfer learning. In: Proceedings of AAAI, pp. 3007–3015 (2015)

    Google Scholar 

  22. Omran, P.G., Wang, K., Wang, Z.: Transfer learning in probabilistic logic models. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 378–389. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_33

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for their helpful comments. This work was supported by the Australian Research Council (ARC) under DP130102302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouya Ghiasnezhad Omran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Omran, P.G., Wang, Z., Wang, K. (2019). Knowledge Graph Rule Mining via Transfer Learning. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics