
Efficient Autotuning of Hyperparameters in
Approximate Nearest Neighbor Search

Elias Jääsaari1, Ville Hyvönen23, and Teemu Roos23

1 Kvasir Ltd. elias.jaasaari@gmail.com
2 University of Helsinki, Department of Computer Science

3 Helsinki Institute for Information Technology (HIIT)
ville.o.hyvonen@gmail.com, teemu.roos@cs.helsinki.fi

Abstract. Approximate nearest neighbor algorithms are used to speed
up nearest neighbor search in a wide array of applications. However, cur-
rent indexing methods feature several hyperparameters that need to be
tuned to reach an acceptable accuracy–speed trade-off. A grid search in
the parameter space is often impractically slow due to a time-consuming
index-building procedure. Therefore, we propose an algorithm for au-
tomatically tuning the hyperparameters of indexing methods based on
randomized space-partitioning trees. In particular, we present results us-
ing randomized k-d trees, random projection trees and randomized PCA
trees. The tuning algorithm adds minimal overhead to the index-building
process but is able to find the optimal hyperparameters accurately. We
demonstrate that the algorithm is significantly faster than existing ap-
proaches, and that the indexing methods used are competitive with the
state-of-the-art methods in query time while being faster to build.

Keywords: Nearest neighbor search · Approximate nearest neighbors ·
Randomized space-partitioning trees · Indexing methods · Autotuning

1 Introduction

Nearest neighbor search is a common component of algorithms and pipelines in
areas such as machine learning [5,17], computer vision [1] and robotics [11]. In
modern applications the search is typically performed in high-dimensional spaces
(100–10000 dimensions) over large data sets.

An exhaustive k-nearest neigbor (k-NN) search is often prohibitively slow in
applications which either require real-time responses (see e.g. [17]) or run on a
resource-constrained device (see e.g. [11]). Hence, approximate nearest neighbor
(ANN) search is often used instead. ANN algorithms first build an index in
an offline phase, after which the index can be used to perform k-NN queries in
sublinear time in an online phase. Most of the efficient algorithms fall into one of
four categories: product quantization (PQ) [8], locality-sensitive hashing (LSH)
[7,4], graph-based methods [10], and tree-based methods [14,13].

Because ANN algorithms are typically used as an auxiliary component of a
pipeline, it can be important for a user that an algorithm requires minimal hand-
tuning, especially if the type or size of the data can vary significantly. However,

ar
X

iv
:1

81
2.

07
48

4v
1

 [
cs

.D
S]

 1
8

D
ec

 2
01

8

2 E. Jääsaari et al.

ANN algorithms typically have several hyperparameters which need to be tuned
by a time-consuming grid search to achieve a given accuracy level or search time.

This problem is solved by an autotuning algorithm where the user specifies
an accuracy level, and the tuning algorithm finds the optimal hyperparameter
values. Previously, autotuning methods have been proposed for VP-trees [18],
multi-probe LSH [4], k-means trees and RKD trees [13]. In this paper, we propose
an autotuning method that is significantly faster than these methods.

Our approach is based on exploiting the structure of randomized space-
partitioning trees [14,13,3,6]. ANN algorithms based on randomized space-partitioning
trees have been used recently for example in machine translation [5], object de-
tection [1] and recommendation engines [17].

Trees have several advantages: they are fast in high-dimensional spaces (see
e.g. experiments in [13,6]); they are simple to implement; they support easy
insertion and deletion of points and they are independent, making the parallel
implementation trivial. Also of great importance to us is that the structure of a
tree-based index can be exploited to speed up the hyperparameter tuning.

Several types of randomized space-partitioning trees have been proposed for
ANN search. Randomized k-d (RKD) trees [14] with a priority queue search are
used in the popular open-source library FLANN [13]. Random projection (RP)
trees [3] with a voting search have a stronger empirical performance than RKD
trees with a priority queue search [6]. However, a single principal component
(PCA) tree has been found to be more accurate than a single RP tree [16]. The
PCA tree has two problems: it is not randomized, and indexing is slow. To solve
these problems, we design a randomized variant of the PCA tree.

Typically ANN algorithms are compared in terms of the accuracy–speed
trade-off. However, for the algorithm to be useful in practice, the index building
procedure must be efficient as well. We test three different types of trees (RKD,
RP and randomized PCA) with two search methods (priority queue and voting)
considering both the query stage and the index building stage.

More specifically, in this article we:

• Propose an autotuning algorithm to optimize the hyperparameters of tree-
based ANN search, and demonstrate that it is faster and more accurate than
existing autotuning methods for ANN algorithms.
• Compare experimentally the effect of a) the randomization strategy and b)
the search method on the efficiency of randomized trees. In particular, we
find RP trees combined with voting search to be the best-performing.
• Demonstrate that the best tree-based method is nearly on par with the state-
of-the-art ANN algorithms when measured on the accuracy–speed trade-off,
and faster when measured on the index building time.

2 Approximate nearest neighbor search

In k-nn search, we have a data set x = (x1, . . . , xn), where each xi ∈ A, from
which we want to find the indices f(q) of the k nearest neighbors for an arbitrary

Efficient Autotuning of Hyperparameters in ANN Search 3

query point q ∈ A measured by a dissimilarity measure dis(u, v) : A2 7→ R. We
assume the dissimilarity measure to be the Euclidean distance ‖u− v‖2.

In approximate nearest neighbor (ANN) search, it is sufficient that the k
points returned by the approximation algorithm are the true nearest neighbors
of the query point only with high probability. We denote the returned points
by f̂(q;α, r), where α stands for the hyperparameters of the algorithm, and r
stands for the realization of a set of random vectors used by the algorithm.

The accuracy of the approximation is measured by the error rate Err(q;α, r) =
1
k

∑k
j=1 1(fj(q) /∈ f̂(q;α, r)), which is the proportion of missed true nearest

neighbors; the indices of the true nearest neighbors are denoted by f(q) =
(f1(q), . . . , fk(q)). Equivalently, we can use recall: Rec(q;α, r) = 1−Err(q;α, r).

In addition to the error rate, we also consider the query time, denoted
Time(q;α, r), when assessing the performance of an ANN algorithm. The hy-
perparameter optimization problem can be formulated in two ways:

1. Fix the expected error rate e ∈ (0, 1) and find the hyperparameters α that
minimize E [Time(Q;α,R)] under the constraint E [Err(Q;α,R)] ≤ e.

2. Fix the expected query time t ∈ (0,∞) and find the hyperparameters α that
minimize E [Err(Q;α,R)] under the constraint E [Time(Q;α,R)] ≤ t.

The expectations E [·] are over both the distribution of a query point Q and
the random vectors R. These expectations can be estimated using a validation
set of query points and a generated sample of random vectors.

3 Randomized space-partitioning trees

3.1 Index construction

A binary space-partitioning tree recursively divides the data points into different
cells with the assumption that nearby points fall into the same cells. At each
branch of the recursion, the data set x is projected onto a chosen direction and
assigned into one of the two child nodes by applying a split criterion. In practice
we use the median split to ensure balanced trees. This process (Algorithm 1) is
continued at the child nodes until the maximum depth ` is met.

The type of a space-partitioning tree is determined by its choice of projec-
tion direction (see Figure 1 for an illustration on 2D data). In Algorithm 1,
each different type of tree implements its own version of the abstract function
generate-direction which chooses this direction. Its argument ψ represents
the tree-type dependent tuning parameters.

In randomized space-partitioning trees, the projection direction is chosen in a
non-deterministic fashion. Randomized k-d (RKD) trees [14] choose a coordinate
direction uniformly at random from m directions of the highest variance as
the projection direction (we use m = 5 as suggested in [14]). Another popular
randomized variant is a random projection (RP) tree [3] in which the projection
direction is chosen uniformly at random from the d-dimensional unit sphere. We

4 E. Jääsaari et al.

Algorithm 1
1: function grow-tree(depth, x, `,ψ)
2: if depth == ` then
3: return indices of points in x as a tree node
4: direction ← generate-direction(ψ)
5: p ← project(x, direction)
6: cut ← split(p)
7: left ← grow-tree(depth + 1, x[p ≤ cut], `)
8: right ← grow-tree(depth + 1, x[p > cut], `)
9: return (left, right, cut, direction) as a tree node

use a sparse version [6], in which only a proportion a = 1/
√
d of the components

of the random vectors are non-zero.
If the first principal component of the data is used as the projection direction,

the resulting data structure is a principal component (PCA) tree [16]. However,
the original PCA trees are on the one hand deterministic which makes improving
accuracy with multiple trees impossible, and on the other hand slow to compute,
as computing exact PCA is costly. To speed up the computation, using gradient
descent updates to approximate the first principal component of the data at each
node of the tree has been suggested [12]. However, index construction still takes
O
(
nd2(i+ `)

)
time, where i is the number of gradient descent updates.

Fig. 1. Different projection directions: k-d (left), RP (middle) and PCA (right).

We make PCA trees more practical for ANN search by modifying the gradient
descent update4 to choose uniformly at random only a =

√
d dimensions of the

data at each node of the tree, and compute the estimated covariance matrix
using only these dimensions. Growing a randomized PCA tree is an O (nd(i+ `))
operation since now computing the sample covariance matrix takes only O (nd)
operations. Considering only a sample of dimensions also ensures that the trees
are randomized, allowing us to build multiple trees to increase accuracy.

4 The gradient descent consistently converges with the learning rate γ = 0.01 in all our
experiments; we did not observe further tuning of the learning rate to be necessary.

Efficient Autotuning of Hyperparameters in ANN Search 5

0.65 0.75 0.85 0.95
recall

10
2

10
1

tim
e

(s
)

RP + PQ
RP + voting
KD + PQ
KD + voting
PCA + PQ
PCA + voting

0.65 0.75 0.85 0.95
recall

Fig. 2. Recall vs. query time with different trees and search methods for MNIST (left)
and Fashion-MNIST (right) for k = 10. Towards bottom right is better.

3.2 ANN search using multiple trees

To use an index consisting of T randomized space-partitioning trees to find k
approximate nearest neighbors of a query point q, the query point is first routed
down to a leaf at each of the trees: at each level the query point is first projected
onto the saved projection direction and then routed into the left or the right child
node depending on which side of the split point its projection falls. There are two
strategies to choose the candidate set of points for which the true distances are
evaluated: priority queue search and voting search. Both of these are independent
of the randomization strategy used to grow the trees.

Priority queue search In a priority queue search [14], a single priority queue,
ordered according to the distance from the query point to the splitting hyper-
planes, is maintained for all trees. When distances from the query point to all
the points sharing a leaf with the query point are evaluated, b extra branches
are explored; the priority queue is used to choose the branches.

Voting search In a voting search [6], distances are computed only to the subset
of the points sharing a leaf with the query point. When a data point belongs
to the same leaf as a query point in a tree, it gets a vote, and distances are
evaluated only to the points that have at least v votes.

3.3 Comparison of randomization and search methods

Figure 2 shows the accuracy–speed trade-off for all combinations of the consid-
ered tree types and search methods on two benchmark data sets. For RP trees,
the results are in line with previous experiments [6]. For each type of tree, voting
outperforms priority queue (for a given recall level, its query time is faster).

For different tree types, the results vary between the data sets. Note that
although both data sets for which results are shown have the same sample size

6 E. Jääsaari et al.

0 10 20 30 40 50
number of trees

0.4

0.6

0.8

1.0

re
ca

ll

RP tree
KD tree
PCA tree

0 10 20 30 40 50
number of trees

RP tree
KD tree
PCA tree

Fig. 3. Recall (for k = 10) as a function of the number of trees on MNIST (left) and
Fashion-MNIST (right) for RP, RKD and randomized PCA trees. ` = 8, v = 1.

(n = 60000) and dimensionality (d = 784), the relative order of the trees is
different: for MNIST, RKD trees are the fastest, and randomized PCA trees are
the slowest; whereas for Fashion-MNIST, randomized PCA trees are the fastest,
and RKD trees are the slowest. This means that the relative performance of
different randomization strategies depends also on the distribution of the data.

Figure 3 further illustrates the differences between the tree types with fixed
parameters: on Fashion-MNIST, PCA trees are noticeably more accurate than
RKD trees and RP trees, especially for a small amount of trees. This explains
the stronger performance of PCA trees with the optimal parameters; observe
that the slightly stronger performance of RKD trees on MNIST is due to their
faster projection times (1 vs.

√
d operations per projection).

However, the differences between tree types are less pronounced than the
difference between search methods. Since we can use the same projection vector
on each node at the same level of an RP tree, they are the fastest to build (see
Table 2). Thus, we present some of the experimental results only for them.

4 An autotuning algorithm

Since voting outperforms using a priority queue for all the data sets and the
tree types, we present an autotuning algorithm for the voting search. Any of the
different tree types can be used. Hence, the tuned hyperparameters α are the
number of trees T , the depth of the trees `, and the vote threshold v.

The optimal hyperparameter values are searched from the whole rangeαlim =
(1, . . . , Tmax) × (`1, . . . , `max) × (1, . . . , vmax); setting a grid interval is not re-
quired. Here we use vmax = Tmax, `max = blog2 nc. Since each individual tree
consumes the same amount of memory and takes an equal time to grow, Tmax
can be chosen as a limit on the building time or the memory consumption.

4.1 Estimating recall and candidate set size
The autotuning algorithm (Algorithm 2) first builds an index consisting of Tmax
trees of depth `max (function grow-trees). The true neighbors of each test
query qi are subsequently found by the function exact-knn.

Efficient Autotuning of Hyperparameters in ANN Search 7

Algorithm 2
1: function generate-index-auto(αlim,x,q, k,ψ)
2: trees ← grow-trees(x,αlim,ψ)
3: for i = 1, . . . ,m do
4: true-knn ← exact-knn(qi, k,x)
5: Ai ← count-elected(αlim, qi, true-knn)
6: Bi ← count-elected(αlim, qi, {1, . . . , n})
7: recalls ← 1

km

∑m

i=1 Ai

8: query-times ← fit-times(1
m

∑m

i=1 Bi, x.dim)
9: return recalls, query-times, trees

For each test query, the elected points are counted by count-elected (Algo-
rithm 3) for two sets: the whole data set and the set of true k nearest neighbors.
When using an index consisting of the first T trees, all the points that were
elected when using an index consisting of the first T − 1 trees are also elected
for the fixed vote threshold v. This means that we only have to count the points
which get their v:th vote at the T :th tree (line 7 of Algorithm 3). Hence, we
can count the numbers of elected points for all 1, . . . , Tmax number of trees with
minimal overhead compared to counting them only for Tmax trees.

Algorithm 3
1: function count-elected(αlim, q, I)
2: initialize three-dimensional tensor A
3: for ` = `1, . . . , `max do
4: initialize votes as zero vector of length n
5: initialize c as zero vector of length vmax
6: for T = 1, . . . , Tmax do
7: c ← c + count-votes(T , `, q, I, votes)
8: write c to A
9: return A
10: function count-votes(T , `, q, I, votes)
11: initialize counts as zero vector of length vmax
12: leaf ← node containing q at level ` of the T :th tree
13: for point in leaf do
14: if point ∈ I then
15: votes[point] ← votes[point] + 1
16: counts[votes[point]] ← counts[votes[point]] + 1
17: return counts

The counting is done by the function count-votes (Algorithm 3) which
adds a vote for each point of the node, and for each v = 1, . . . vmax, counts how
many points of this node get their v:th vote.

Finally, the expected recall and candidate set size can be estimated by their
sample means for each parameter combination (lines 7 and 8 in Algorithm 2).

8 E. Jääsaari et al.

Since a brute force strategy of performing actual test queries and timing them
for each possible hyperparameter combination in the set αlim is impractically
slow, the function fit-times estimates the expected query time as a function of
the candidate set size and data dimension as described in the following section.

4.2 Estimating the query time

We exploit linear scaling of the components of a query to build a model which
estimates the query time. The query time can be split into the candidate pruning
time and the final search time. Further, the candidate pruning phase is domi-
nated by two operations: projecting the points onto the split directions, and vote
counting. This suggests that we can estimate each of the three times separately:

Time(q;α, r) ≈ Timeproj(q;α, r) + Timevote(q;α, r) + Timedist(q;α, r).

Projection time The projection time depends on the type of randomization
used in the trees. In RKD trees, the projection time is insignificant because
coordinate axes are used as split directions. For RP trees and randomized PCA
trees, the query point is projected onto a sparse vector at each level of each tree.
Hence, the projection time is approximately linear w.r.t. the number of random
vectors z := T` the query point is projected onto. Thus, we can use a linear
model to estimate the projection time for known hyperparameters T and `.

To collect the data for the model, we design an experiment by choosing a
representative sample z = (z1, . . . , zw) of sparse random matrices with d columns
and z1, . . . , zw total components, and measuring the elapsed times to multiply a
d-component vector by each of these matrices. The sparsity is fixed as a = 1/

√
d.

When measuring running times, we observed that the random variation is
typically small, but sometimes outliers appear, for example due to other pro-
cesses activating on the background. This is why we use the Theil-Sen estimator
[15] to model the dependence between the number of random vectors and pro-
jection time. It is a non-parametric estimator for a linear trend, and is much
more robust against outliers than ordinary least squares regression.

Now the expected projection time for the hyperparameter values α = (T, `, v)
can be estimated as T̂imeproj(q;α, r) = β̂0 + zβ̂1, where z = T`, and β̂0 and β̂1
are the intercept and the slope estimated by the Theil-Sen method.

Voting time For one tree, counting the votes means adding a vote for each
point of the leaf the query point falls into. For T trees, this means that the whole
voting step takes roughly Tn0 operations, where n0 = dn/2`e is the maximum
leaf size. This means that we can model the voting time as a linear function of
y := Tn0, and proceed as in estimating the projection times.

Final search time The final search in the candidate set is dominated by com-
puting the distances to all |S| points of the candidate set, which takes |S|d

Efficient Autotuning of Hyperparameters in ANN Search 9

0.2 0.4 0.6 0.8 1.0

expected recall

0.2

0.4

0.6

0.8

1.0

tru
e

re
ca

ll

10 queries
100 queries
1000 queries
optimal

0.5 0.6 0.7 0.8 0.9 1.0
recall

10
2

tim
e

(s
)

optimal
RP auto

Fig. 4. Left: Recall estimated by autotuning vs. recall on the test set. Right: Recall vs.
query time on test set for optimal parameters and auto-tuned parameters. k=10.

operations; hence it is approximately linear with respect to the candidate set
size |S|. Thus, we can proceed as before, this time measuring the time it takes
to compute the distances from any d-dimensional query point to |S| vectors of
dimension d. After fitting the model, the final search time can be estimated as

T̂imedist(q;α, r) = α̂0 + |S̄(q;α, r)|α̂1,

where α̂0 and α̂1 are the coefficients of the Theil-Sen estimator, and |S̄(q;α, r)|
is the observed mean candidate set size for this hyperparameter combination.

4.3 Using the autotuning index

After the expected recall levels and the query times have been computed, finding
the optimal parameter combination is a matter of a simple table lookup. Since
the index has already been built, growing new trees is not required: if the optimal
parameter combination is α̂ = (T̂ , ˆ̀, v̂), we can just pick the first T̂ trees that
have already been built, and prune them to depth ˆ̀.

5 Experimental results

First, we verify using RP trees that the autotuning algorithm accurately esti-
mates the recall. Figure 4 (a) shows estimated recall on a validation set against
recall on an independent test set for the MNIST data set. Larger validation
sets yield sharper estimates, indicating the consistency of the estimator. The
results are similar for other data sets and tree types. Figure 4 (b) compares on
an independent test set hyperparameters optimized by the autotuning algorithm
(RP auto) for the validation set to hyperparameters optimized for the test set
(optimal). The parameters found by the algorithm are near-optimal.

Next, we compare the performance of the presented algorithm with RP trees
to other autotuning algorithms for ANN: autotuning for VP-trees [18] and multi-
probe LSH [4] implemented in NMSLib [2] and autotuning for RKD trees and

10 E. Jääsaari et al.

Target recall 80% Target recall 90%
RP LSH VPtree FLANN RP LSH VPtree FLANN

MNIST
tuning 13.23 26.84 744.4 102.2 13.23 24.61 926.1 113.9
search 0.111 1.164 0.739 0.206 0.169 2.513 1.368 0.311
recall 0.822 0.853 0.831 0.654 0.909 0.939 0.911 0.790
stdev ±0.009 – – ±0.020 ±0.004 – – ±0.017

Fashion
tuning 13.22 26.70 396.5 104.8 13.23 25.38 427.4 136.4
search 0.129 0.917 0.353 0.310 0.198 1.575 0.557 0.216
recall 0.798 0.850 0.813 0.693 0.881 0.927 0.908 0.825
stdev ±0.007 – – ±0.034 ±0.006 – – ±0.025

Trevi
tuning 75.89 156.1 3026 724.9 76.28 158.9 * 751.6
search 1.730 14.01 13.58 2.813 3.371 25.63 * 4.276
recall 0.822 0.837 0.832 0.566 0.914 0.918 * 0.679
stdev ±0.011 – – ±0.028 ±0.006 – * ±0.016

Random
tuning 32.78 55.48 120.6 134.6 32.76 54.56 134.0 149.1
search 0.074 0.256 0.409 0.049 0.095 0.249 0.659 0.087
recall 0.804 0.882 0.827 0.602 0.902 0.941 0.911 0.728
stdev ±0.012 – – ±0.015 ±0.007 – – ±0.015

GIST
tuning 317.4 484.1 960.4 * 318.1 437.9 1127 *
search 9.253 122.4 41.55 * 15.51 205.7 66.54 *
recall 0.784 0.862 0.864 * 0.881 0.942 0.940 *
stdev ±0.011 – – * ±0.005 – – *

Table 1. Comparison of autotuning algorithms. Autotuning times (seconds), query
times for 1000 queries (s) and recall (for k = 10) measured on a test set (* = did not
complete within one hour). For the randomized algorithms (RP and FLANN), average
recalls of 10 runs with the corresponding standard deviations are reported. The best
result in each case is typeset in boldface.

hierarchical k-means trees in FLANN [13]. To the best of our knowledge, these
are the only available ANN libraries that feature an autotuning method. The
compared libraries and our own code are all written in C++.

The data sets used in the experiments are MNIST (n=60000, d=784), Fashion-
MNIST (n=60000, d=784), Trevi (n=101120, d=4096), Random (n=256000,
d=256) and GIST (n=1000000, d=960). Table 1 shows for two target recall
rates (0.8 and 0.9) the autotuning time (including the index-building time), and
the query time and recall on a test set which was not used to tune the hyper-
parameters. The proposed tuning algorithm (with RP trees) is fastest at index
building in all cases. Our approach has significantly faster query times than VP
trees and LSH in all cases, and faster query times than FLANN for all but one
data set. Our approach is also the most accurate at estimating the recall in most
cases. The other methods systematically over- or underestimate the recall.

We also compare tree-based ANN against state-of-the-art quantization-, and
graph-based algorithms: IVFPQ [8] and HNSW [10] implemented in FAISS [9].
As autotuning for these methods is not available, we perform a grid search on

Efficient Autotuning of Hyperparameters in ANN Search 11

10
2

10
1

10
0 MNISTRP

KD
PCA
HNSW
IVFPQ
LSH
VP-tree

10
2

10
1

tim
e

(s
)

Fashion

0.5 0.6 0.7 0.8 0.9 1.0

recall

10
1

10
0

10
1

Trevi

0.5 0.6 0.7 0.8 0.9 1.0

recall

10
2

10
1

tim
e

(s
)

Random

Fig. 5. Recall vs. query time (s) for 100 queries for different ANN algorithms. k = 10.

the possible parameter values. Figure 5 shows that tree-based methods are faster
than PQ (except on highest recall levels) and close to the performance of HNSW.
We emphasize that according to an independent benchmarking project5, HNSW
is the fastest ANN algorithm available. Multi-probe LSH and VP tree are also
included in the comparison; they are significantly slower than the other methods.

Finally, we compare the index building time (Table 2). Even though HNSW
has faster query times, RP trees are significantly faster to build. The whole
autotuning takes less time than building a single HNSW index. We emphasize
that these results are on a single thread; the differences become more pronounced
with multiple threads as the indexing process is embarrassingly parallel for trees.
An implementation of the proposed algorithm is available in the MRPT library6.

Acknowledgments. This project was supported by Business Finland (project
3662/31/2018 Advanced Machine Learning for Industrial Applications) and the
Academy of Finland (project 311277 TensorML).

5 https://github.com/erikbern/ann-benchmarks
6 https://github.com/vioshyvo/mrpt

https://github.com/erikbern/ann-benchmarks
https://github.com/vioshyvo/mrpt

12 E. Jääsaari et al.

RP RKD PCA HNSW IVFPQ
MNIST 3.62 7.40 12.63 25.1 27.31
Fashion 1.86 14.3 13.12 20.2 30.71
Trevi 102 43.2 185 266 262.5
Random 2.23 6.83 27.8 90.3 63.59

Table 2. Index building times (seconds) for optimal parameters at 90% recall for
different ANN algorithms. The best result on each data set is typeset in boldface.

References
1. Bilen, H., Pedersoli, M., Tuytelaars, T.: Weakly supervised object detection with

convex clustering. In: CVPR. pp. 1081–1089. IEEE (2015)
2. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space li-

brary. In: International Conference on Similarity Search and Applications. pp.
280–293. Springer (2013)

3. Dasgupta, S., Sinha, K.: Randomized partition trees for nearest neighbor search.
Algorithmica 72(1), 237–263 (2015)

4. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for
performance tuning. In: CIKM. pp. 669–678. ACM (2008)

5. Hassan, H., Elaraby, M., Tawfik, A.Y.: Synthetic data for neural machine transla-
tion of spoken-dialects. Small 16, 17–33 (2017)

6. Hyvönen, V., Pitkänen, T., Tasoulis, S., Jääsaari, E., Tuomainen, R., Wang, L.,
Corander, J., Roos, T.: Fast nearest neighbor search through sparse random pro-
jections and voting. In: Big Data, IEEE International Conf. on. pp. 881–888 (2016)

7. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC. pp. 604–613. ACM (1998)

8. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. TPAMI 33(1), 117–128 (2011)

9. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734 (2017)

10. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. arXiv:1603.09320 (2016)

11. McBryde, C.R.: Spacecraft Visual Navigation Using Appearance Matching and
Multi-Spectral Sensor Fusion. Ph.D. thesis, Georgia Institute of Technology (2018)

12. McCartin-Lim, M., McGregor, A., Wang, R.: Approximate principal direction
trees. In: ICML. pp. 1611–1618 (2012)

13. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. TPAMI 36(11), 2227–2240 (2014)

14. Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching.
In: CVPR. pp. 1–8. IEEE (2008)

15. Theil, H.: A rank-invariant method of linear and polynomial regression analysis.
In: Henri Theil’s contributions to economics and econometrics, pp. 345–381 (1992)

16. Verma, N., Kpotufe, S., Dasgupta, S.: Which spatial partition trees are adaptive
to intrinsic dimension? In: UAI. pp. 565–574. AUAI Press (2009)

17. Wang, L., Tasoulis, S., Roos, T., Kangasharju, J.: Kvasir: Scalable provision of
semantically relevant web content on big data framework. IEEE Transactions on
Big Data 2(3), 219–233 (2016)

18. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: SODA. vol. 93, pp. 311–321 (1993)

	Efficient Autotuning of Hyperparameters in Approximate Nearest Neighbor Search

