Skip to main content

Player Engagement Enhancement with Video Games

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 931))

Abstract

This work aims to present and summarize the identified main research fields about player engagement enhancement with video games. The expansion of video game diversity, complexity and applicability increased development costs. New approaches aim to automatize the design process by developing algorithms that can understand players requirements and redesign games on the fly. Multiplayer games have the added benefit of socially engage all involved parties through game-play. But balancing becomes more important as feeling overwhelmed by a stronger opponent may be demotivating, as feeling underwhelmed by a weaker adversary that cannot provide enough challenge and stimulation. Our research concludes that there is still lack of research effort in the identified fields. This may be due to the lack of academy incentive on the subject. The entertainment industry depends on game quality to increase their revenue, but lack interest on sharing their knowledge. We identify potential application on Serious Games.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://mario.nintendo.com/.

  2. 2.

    http://sauerbraten.org/.

References

  1. Altimira, D., Mueller, F.F., Clarke, J., Lee, G., Billinghurst, M., Bartneck, C.: Enhancing player engagement through game balancing in digitally augmented physical games. Int. J. Hum.-Comput. Stud. 103(C), 35–47 (2017)

    Article  Google Scholar 

  2. Altimira, D., Mueller, F.F., Lee, G., Clarke, J., Billinghurst, M.: Towards understanding balancing in exertion games. In: Proceedings of the 11th Conference on Advances in Computer Entertainment Technology, ACE 2014, pp. 10:1–10:8. ACM, New York (2014)

    Google Scholar 

  3. Andersen, P., Goodwin, M., Granmo, O.: Deep RTS: a game environment for deep reinforcement learning in real-time strategy games. In: 2018 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8 (2018)

    Google Scholar 

  4. Bakkes, S., Whiteson, S., Li, G., Vişniuc, G.V., Charitos, E., Heijne, N., Swellengrebel, A.: Challenge balancing for personalised game spaces. In: 2014 IEEE Games Media Entertainment, pp. 1–8 (2014)

    Google Scholar 

  5. Baldwin, A., Johnson, D., Wyeth, P., Sweetser, P.: A framework of dynamic difficulty adjustment in competitive multiplayer video games. In: 2013 IEEE International Games Innovation Conference (IGIC), pp. 16–19, September 2013

    Google Scholar 

  6. Bateman, S., Mandryk, R.L., Stach, T., Gutwin, C.: Target assistance for subtly balancing competitive play. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2011, pp. 2355–2364. ACM, New York (2011)

    Google Scholar 

  7. Bernhaupt, R., Ijsselsteijn, W., Mueller, F.F., Tscheligi, M., Wixon, D.: Evaluating user experiences in games. In: CHI 2008 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2008, pp. 3905–3908. ACM, New York (2008)

    Google Scholar 

  8. Bontchev, B., Georgieva, O.: Playing style recognition through an adaptive video game. Comput. Hum. Behav. 82, 136–147 (2018)

    Article  Google Scholar 

  9. Booth, M.: The AI systems of left 4 dead. In: Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford (2009)

    Google Scholar 

  10. Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25(12), 1085 (2009)

    Article  Google Scholar 

  11. Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Augmented reality games for upper-limb stroke rehabilitation. In: 2010 Second International Conference on Games and Virtual Worlds for Serious Applications, pp. 75–78 (2010)

    Google Scholar 

  12. Clarke, D., Duimering, P.R.: How computer gamers experience the game situation: a behavioral study. Comput. Entertain. 4(3) (2006)

    Article  Google Scholar 

  13. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Perennial, New York, NY (1991)

    Google Scholar 

  14. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content generation for games: a survey. ACM Trans. Multimed. Comput. Commun. Appl. 9(1), 1:1–1:22 (2013)

    Article  Google Scholar 

  15. Hunicke, R.: The case for dynamic difficulty adjustment in games. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE 2005, pp. 429–433. ACM, New York (2005)

    Google Scholar 

  16. Iosup, A.: Poggi: puzzle-based online games on grid infrastructures. In: Sips, H.J., Epema, D.H.J., Lin, H.-X., (eds.) Proceedings of the 15th International Euro-Par Conference on Parallel Processing (Euro-Par). LNCS, vol. 5704, pp. 390–403. Springer, Berlin (2009)

    Google Scholar 

  17. Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G., Castañeda, A.G., Beattie, C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A., Sonnerat, N., Green, T., Deason, L., Leibo, J.Z., Silver, D., Hassabis, D., Kavukcuoglu, K., Graepel, T.: Human-level performance in first-person multiplayer games with population-based deep reinforcement learning. CoRR, abs/1807.01281 (2018)

    Google Scholar 

  18. Karavolos, D., Liapis, A., Yannakakis, G.: Learning the patterns of balance in a multi-player shooter game. In: Proceedings of the 12th International Conference on the Foundations of Digital Games, FDG 2017, pp. 70:1–70:10. ACM, New York (2017)

    Google Scholar 

  19. Kolb, D.A.: Experiential Learning: Experience as the Source of Learning and Development. Prentice-Hall PTR, Englewood Cliffs, New Jersey (1984)

    Google Scholar 

  20. Lanzi, P.L., Loiacono, D., Stucchi, R.: Evolving maps for match balancing in first person shooters. In: 2014 IEEE Conference on Computational Intelligence and Games, pp. 1–8 (2014)

    Google Scholar 

  21. Lara-Cabrera, R., Camacho, D.: A taxonomy and state of the art revision on affective games. Future Generation Computer Systems (2018)

    Google Scholar 

  22. Missura, O., Gaertner, T.: Online adaptive agent for connect four. In: Proceedings of the 4th International Conference on Games Research and Development CyberGames, pp. 1–8 (2008)

    Google Scholar 

  23. Missura, O., Gärtner, T.: Player modeling for intelligent difficulty adjustment. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B., (eds.) Discovery Science, pp. 197–211. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Missura, O., Gärtner, T.: Predicting dynamic difficulty. In:  Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 2007–2015. Curran Associates, Inc. (2011)

    Google Scholar 

  25. Mladenov, M., Missura, O.: Offline learning for online difficulty prediction. In: Workshop on Machine Learning and Games at ICML (2010)

    Google Scholar 

  26. Moya, S., Grau, S., Tost, D., Campeny, R., Ruiz, R.: Animation of 3D avatars for rehabilitation of the upper limbs. In: 2011 Third International Conference on Games and Virtual Worlds for Serious Applications, pp. 168–171, May 2011

    Google Scholar 

  27. Mueller, F., Vetere, F., Gibbs, M., Edge, D., Agamanolis, S., Sheridan, J., Heer, J.: Balancing exertion experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 1853–1862. ACM, New York (2012)

    Google Scholar 

  28. Oliveira, S., Magalhães, L.: Adaptive content generation for games. In: Encontro Português de Computação Gráfica e Interação (EPCGI), pp. 1–8, October 2017

    Google Scholar 

  29. Shi, P., Chen, K.: Learning constructive primitives for real-time dynamic difficulty adjustment insuper mario bros. IEEE Trans. Games 10(2), 155–169 (2018)

    Article  Google Scholar 

  30. Silva, M.P., do Nascimento Silva, V., Chaimowicz, L.: Dynamic difficulty adjustment on MOBA games. CoRR, abs/1706.02796 (2017)

    Google Scholar 

  31. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

  32. Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in games. Comput. Entertain. 3(3), 3–3 (2005)

    Article  Google Scholar 

  33. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content generation: a taxonomy and survey. IEEE Trans. Comput. Intell. AI Games 3(3), 172–186 (2011)

    Article  Google Scholar 

  34. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G.N., Grappiolo, C.: Controllable procedural map generation via multiobjective evolution. Genet. Program. Evolvable Mach. 14(2), 245–277 (2013)

    Article  Google Scholar 

  35. Wu, M.,  Xiong, S.,  Iida, M.: Fairness mechanism in multiplayer online battle arena games. In: 2016 3rd International Conference on Systems and Informatics (ICSAI), pp. 387–392, November 2016

    Google Scholar 

  36. Xia, W.,  Anand, M.: Game balancing with ecosystem mechanism. In: 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE), pp. 317–324, March 2016

    Google Scholar 

  37. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation. IEEE Trans. Affective Computing 2(3), 147–161 (2011)

    Article  Google Scholar 

  38. Yannakakis, G.N., Maragoudakis, M.: Player modeling impact on player’s entertainment in computer games. In: Ardissono, L., Brna, P., Mitrovic, A. (eds.) User Modeling 2005, pp. 74–78. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  39. Yun, C., Shastri, D., Pavlidis, I., Deng, Z.: O’ game, can you feel my frustration?: Improving user’s gaming experience via stresscam. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 2195–2204. ACM, New York (2009)

    Google Scholar 

  40. Zook, A.E., Riedl, M.O.: A temporal data-driven player model for dynamic difficulty adjustment. In: Proceedings of the Eighth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2012, pp. 93–98. AAAI Press (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by: Portuguese Foundation for Science and Technology (FCT) under grant SFRH/BD/129445/2017; LIACC (PEst-UID/CEC/00027/2013); IEETA (UID/CEC/00127/2013);

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simão Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reis, S., Reis, L.P., Lau, N. (2019). Player Engagement Enhancement with Video Games. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol 931. Springer, Cham. https://doi.org/10.1007/978-3-030-16184-2_26

Download citation

Publish with us

Policies and ethics