Skip to main content

Parallel Implementations of Self-gravity Calculation for Small Astronomical Bodies on Xeon Phi

  • Conference paper
  • First Online:
  • 391 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 979))

Abstract

This article presents parallel implementations of the Mass Approximation Distance Algorithm for self-gravity calculation on Xeon Phi. The proposed method is relevant for performing simulations on realistic systems modeling small astronomical bodies, which are agglomerates of thousand/million of particles. Specific strategies and optimizations are described for execution on the Xeon Phi architecture. The experimental analysis evaluates the computational efficiency of the proposed implementations on realistic scenarios, reporting the best options for the implementation. Specific performance improvements of up to 146.4\(\times \) are reported for scenarios with more than one million particles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harris, A., Fahnestock, E., Pravec, P.: On the shapes and spins of “rubble pile” asteroids. Icarus 199(2), 310–318 (2009)

    Article  Google Scholar 

  2. Haile, J.: Molecular Dynamics Simulation: Elementary Methods. John Wiley & Sons Inc., New York (1992)

    Google Scholar 

  3. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  4. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  5. Frascarelli, D., Nesmachnow, S., Tancredi, G.: High-performance computing of self-gravity for small solar system bodies. Computer 47(9), 34–39 (2014)

    Article  Google Scholar 

  6. Nesmachnow, S., Frascarelli, D., Tancredi, G.: A parallel multithreading algorithm for self-gravity calculation on agglomerates. In: Gitler, I., Klapp, J. (eds.) ISUM 2015. CCIS, vol. 595, pp. 311–325. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32243-8_22

    Chapter  Google Scholar 

  7. Rocchetti, N., Frascarelli, D., Nesmachnow, S., Tancredi, G.: Performance improvements of a parallel multithreading self-gravity algorithm. In: Mocskos, E., Nesmachnow, S. (eds.) CARLA 2017. CCIS, vol. 796, pp. 291–306. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73353-1_21

    Chapter  Google Scholar 

  8. Rönnbäck, E.: Parallel implementation of the projected Gauss-Seidel method on the Intel Xeon Phi processor-application to granular matter simulation. Master Thesis ID: diva2:747201. Umeå University, Sweden (2014)

    Google Scholar 

  9. Surmin, I., Bastrakov, S., Gonoskov, A., Efimenko, E.S., Meyerov, I.: Particle-in-cell plasma simulation using Intel Xeon Phi coprocessors. Vychislitel’nye Metody i Programmirovanie 15(3), 530–536 (2014)

    Google Scholar 

  10. Pennycook, S., Hughes, C., Smelyanskiy, M., Jarvis, S.: Exploring SIMD for molecular dynamics, using Intel® Xeon® processors and Intel® Xeon Phi coprocessors. In: 27th International Symposium on Parallel & Distributed Processing, pp. 1085–1097 (2013)

    Google Scholar 

  11. Sandia National Laboratories. Mantevo Project (2017). https://mantevo.org/. Accessed March 2018

  12. Kothari, B., Claypool, M.: Pthreads performance. Technical Report WPI-CS-TR-99-11. Worcester Polytechnic (1999)

    Google Scholar 

  13. Ajkunic, E., Fatkic, H., Omerovic, E., Talic, K., Nosovic, N.: A comparison of five parallel programming models for C++. In: 35th International Convention on Information and Communication Technology, Electronics and Microelectronics, pp. 1780–1784 (2012)

    Google Scholar 

  14. Leist, A., Gilman, A.: A comparative analysis of parallel programming models for C++. In: 9th International Multi-conference on Computing in the Global Information Technology, pp. 121–127 (2014)

    Google Scholar 

  15. Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay 61(1), 12–15 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Nesmachnow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caballero, S., Baranzano, A., Nesmachnow, S. (2019). Parallel Implementations of Self-gravity Calculation for Small Astronomical Bodies on Xeon Phi. In: Meneses, E., Castro, H., Barrios Hernández, C., Ramos-Pollan, R. (eds) High Performance Computing. CARLA 2018. Communications in Computer and Information Science, vol 979. Springer, Cham. https://doi.org/10.1007/978-3-030-16205-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16205-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16204-7

  • Online ISBN: 978-3-030-16205-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics