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Abstract. Energy and performance of parallel systems are an increas-
ing concern for new large-scale systems. Research has been developed in
response to this challenge aiming the manufacture of more energy effi-
cient systems. In this context, this paper proposes optimization methods
to accelerate performance and increase energy efficiency of geophysics
applications used in conjunction to algorithm and GPU memory charac-
teristics. The optimizations we developed applied to Graphics Processing
Units (GPU) algorithms for stencil applications achieve a performance
improvement of up to 44.65% compared with the read-only version. The
computational results have shown that the combination of use read-only
memory, the Z-axis internalization and reuse of specific architecture reg-
isters allow increase the energy efficiency of up to 54.11% when shared
memory was used and increase of up to 44.53% when read-only was used.

Keywords: Geophysics applications · Manycore systems · Energy effi-
ciency · GPU.
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1 Introduction

Several applications in areas, such as physics simulation, weather forecast, oil
exploration, climate modeling and atomic simulation require high processing
power and efficient models. Some of these scientific applications make use of
stencil computations that include both implicit and explicit Partial Differen-
tial Equations (PDE) solvers [3]. Besides the scientific importance of stencils,
they are interesting as an architectural evaluation benchmark because they have
abundant parallelism and low computational intensity, offering opportunities for
on-chip parallelism and challenges for associated memory systems [3]. Today,
PetaFlops systems allow reaching increasingly accurate results these scientific
applications. To respond to the high processing demand of stencil applications,
High Performance Computing (HPC) systems gather the processing power of
several computational resources to solve these problems.

Scientific simulations may consume weeks of supercomputer time and most
of this time is spent in stencil computations [2]. Continuous changes in the
fabrication process of the microprocessors industry have increased the perfor-
mance of its products and influenced state-of-the-art HPC systems. However,
this exponential increase in computational performance also leads to an expo-
nential growth in power demand [4, 8, 13]. Reductions in the total execution time
of applications are also relevant for energy consumption, energy is saved when
hardware resources are used for a shorter time.

However, it is possible to achieve even greater energy savings if the applica-
tion is able to exploit the different memory levels available. Today, the combined
use of Graphics Processing Units (GPUs) and CPUs in HPC systems has be-
come a popular choice among the top ranked and yet to come platforms. Stencil
computing is typically memory-bound, memory performance is particularly im-
portant for most stencil kernels. GPUs have several processing elements inside a
single die and different memory levels. For this reason, one of the most important
strategies for optimizing the performance of stencil computing is the optimization
of memory access. Besides, stencil computing can be ported to GPUs with sig-
nificantly improved performance when compared to implementations performed
on CPUs [9].

The performance of a stencil for a given architecture can be estimated through
the roofline model [16]. This model relates the maximum performance of code
to its computational intensity, considering the speed of memory access and the
processing capacity of the machine [11]. In this paper, we improved the per-
formance and achieved increase energy efficiency of stencil applications by im-
proving methods and optimizations of GPU code. Those are used in conjunction
with specific GPU memory characteristics. We focus on analyzing the impact of
the stencil size and usage of different memory hierarchies and registers of the
GPU to improve performance, power demand, energy consumption and energy
efficiency.

The remaining sections of this paper are organized as follows. Section 2 dis-
cusses some of the related works on energy consumption In Section 3, we present
the stencils application and details of our versions and optimization developed.
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In Section 4, we present the evaluation methodology used in the conducted
experiments and the stencils and their implementation details. In addition, in
Section 5, we address the results obtained from the experiments. Finally, the
Section 6 emphasizes the scientific contribution of the work and notes several
challenges that we can address in the future.

2 Related Work

Several studies have evaluated performance of stencils to improve their energy
efficiency in CPUs and GPUs systems. Despite that, the processors and accelera-
tors remain as the component with the highest power demand of the systems [6].
GPUs are made aiming at massively parallel processing, to achieve this they use
hundreds of processing units working together. These characteristics lead to its
superior energy efficiency if compared with CPUs systems [14].

Micikevicius et al. [10] compared the performance of a stencil ported from
CPU to GPU. Their version of the stencil running in a GPU achieved an order
of magnitude higher than running in a contemporary CPU. They conclude that
it is possible to improve their results by the usage of shared memory to reduce
communication overhead.

Bauer et al. [1] showed that the main bottleneck in GPU applications are
related to the memory system. To reduce its impact, they used DMA warps to
improve memory transfer between on-chip and off-chip memories. They achieved
a speedup up to 3.2 times on several kernels form scientific applications.

Schäfer and Fey [15] evaluate a set of algorithms on Fermi GPUs. They
evaluate micro benchmarks using shared memory and found that using only L1
cache creates a problem for its limited throughput. Also, the L2 cache is not a
good option because of cache blocking. They conclude that a new alternative to
use shared memory was needed to overcome communication bottleneck.

Falch and Elster [5] proposed the usage of a manually managed cache to
combine the memory from multiple threads. Using their technique, they achieved
a speedup of up to 2.04 in a synthetic stencil. They concluded that manual
caching is an effective approach to improve memory access and that applications
with regular access patterns are suitable to implement their technique.

Zhou et al. [18] points that the use of GPUs enables considerable gains in per-
formance compared to using CPU. They have applied GPUs successfully in many
computations and memory intensive realms due to its superior performances in
float-pointing calculation, memory bandwidth, and power consumption. The re-
sults obtained show a speedup of up to 50 times using GPU algorithm rather
than CPU algorithm. In similar works, Zhou et al. [19] obtained a speedup be-
tween 10 and 15 times using a GPU rather than CPU.

Xue et al. [17] also make comparisons between GPU and CPU implementa-
tion. They obtained a speedup up to 18 times in the GPU-based implementation
of a time-reversal imaging micro-seismic event location.
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Also, Nikitin et al. [12] obtained average speedup up to 46 times using GPU
for compared to CPU for processing a synthetic seismic data set (data compres-
sion, de-noising, and interpolation).

Maruyama and Aoky [9] presents a method for stencil computations on the
NVIDIA Kepler architecture that uses shared memory for better data local-
ity combined with warp specialization for higher instruction throughput, their
method achieves approximately 80% of the value from roof line model estimation.

Hamilton et al. [7] investigate the computational performance of GPU-based
stencil operations using stencils of varying shape and size (ranging from seven
to more than 450 points in size). They found that using an NVIDIA K20 GPU,
data movement, rather than computing, was the bottleneck, and as such, the
performance obtained can be attributed to the effects of the L2 and texture
caches on the card.

Compact stencils are more efficient using the texture cache and require fewer
reads from global memory. The leggy stencils schemes required a significant
portion of global memory bandwidth in order to achieve similar performance as
compact stencils of similar size in points.

Nasciutti and Panetta [11] did a performance analysis of 3D stencils on GPUs
focusing on the proper use of the memory hierarchy. They conclude that the
preferred code is the combination of read only cache reuse, inserting the Z loop
into the kernel and register reuse.

Different to other approaches that allocate workload on CPU and GPU ar-
chitectures, or works that use GPUs to achieve considerable performance gains
when compared to traditional CPU architecture, our goal aims to increase the
performance and energy efficiency of stencil application applying methods and
optimization to use different memory levels of the GPUs.

3 Geophysical Model Optmizations

The model simulates the collection of data in a seismic wave propagation. At
intervals of, equipment coupled to the ship emits waves that reflect and refract
on changes of the medium in the subsoil. Eventually, these waves return to the
surface of the sea, being collected by specific microphones (geophones) coupled
to cables towed by the ship. The set of signals received by each geophone over
time constitutes a seismic trace. For each wave emission, the seismic traces of
all cable geophones are recorded. The ship continues to sailing and emits signals
over time.

Acoustic wave propagation approximation is the current backbone for seismic
imaging tools. It has been extensively applied to imaging potential oil and gas
reservoirs beneath salt domes. We consider the model formulated by the isotropic
acoustic wave propagation under Dirichlet boundary conditions over a finite 3D
rectangular domain, prescribing to all boundaries, and the isotropic acoustic
wave propagation. Propagation speed depends on variable density, the acoustic
pressure, and the media density. These applications are modeling and solved
using stencil computations.
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Fig. 1: Sample of the memory subsystem on a NVIDIA Kepler architecture

In this context, the computational performance of GPU-based stencils have
a great scientific importance as it is used in many areas of scientific computing.
Regarding the capatiblities of current GPU architectures, the NVIDIA Kepler
provide memories with different characteristics compared with CPUs. One of the
main differences between GPUs and CPUs is the way their memory subsystem
work. In a CPU, access to memory is done by obtaining their data from caches.
Usually looking on L1, L2, L3, and DRAM in that order. On the other hand,
in a GPU the L1 memory cache, is used specifically for accesses to the stack
and register spill, i.e., when too many local variables do not fit in the register
file, and thus some of it has to be cached. L2 memory is used for global accesses
requested by stream processors.

The current GPU have also registers files, a shared memory. They are a tex-
ture memory and a global memory with different characteristics such as size,
speed, read-only memory and in the way that is possible to use them. These reg-
isters were not available in Nvidia GPUs before Kepler architecture. In Figure 1
is shown an overview of the Kepler GPU architecture, which have different SP
(Stream Processor) in each SMX (Streaming Multiprocessors).

To exploit the use of different memory levels available on current GPU, we
develop three versions of a stencil kernel using each one of the GPU memories.
Each stencil version, give us a different insight of the performance and capabili-
ties of the GPU memory subsystem.

– The first version called naive take no advantage of any of the GPU high-
speed memories and access data only from global memory.

– The second version called shared stores one part of the stencil data in the
shared memory scratchpad. The shared-memory version also uses the GPU
resources that the naive version uses, the main difference is that this version
also uses the shared-memory available on each SMX (Streaming Multipro-
cessors). Each one of the SMX have one internal shared-memory to store
data as shown in Figure 1. In this version, data is manually allocated by
the programmer through the use of the shared directive, indicating such
data will be shared among all the GPU threads. The compiler automatically
configures the space division between the L1 cache memory and the shared
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cache memory, choosing one of three options: 16 KB for the L1 cache and
48 KB for the shared cache, 32 KB for each, or 48 KB for the L1 cache and
16 KB for the shared cache.

– The third version called read-only stores most read data in a read-only tex-
ture memory which is faster than shared memory but works with read-only
data. This version takes advantage of the read-only cache, this cache is the
SMX memory bank that stores only read data, it is also called texture mem-
ory. Originally it was used only for textures, but starting with the Kepler
architecture any data can be stored in this cache by using the C-99 direc-
tive const restrict. The programmer may also explicitly use this cache
through the intrinsic lgd().

We developed two optimizations for each of the versions to evaluate improve-
ments in performance and energy efficiency by reusing the Z direction data.
Reusing Z direction data is named internalization.

– The int.z version takes advantage of data locality by storing stencil data
for direction Z. This optimization consists of the internalization of the Z-
axis into the threads. Doing the internalization ensures that neighbouring
Z-blocks execute sequentially, increasing the reuse of L2 cache data. Direction
Z data is used to calculate subsequents points in the X-Y direction.

– The int.z.reg version consists of combining the int.z with the usage of reg-
isters to store the Z direction points. For example, to calculate the point Z3
in a 13 points stencil, the neighbouring points in X and Y, as well as points
Z1, Z2, Z3, Z4 and Z5 are required. In order to calculate the points in Z4,
points Z2, Z3, Z4 and Z5 would be availed, and it is necessary to request the
global memory only points Z6, as well as the neighbours in X and Y.

4 Experimental Methodology

Our experiments were developed in a NVIDIA K20m GPU card. The K20m is a
Kepler architecture GPU with 2496 CUDA cores. Each Streaming Multiproces-
sor has a configurable on-chip memory that can be configured as 48/32/16 KB
shared memory with 16/32/48 KB of L1 cache. They also have a faster 48 KB
read-only cache and a 1280 KB shared L2 cache. Table 1 describes in detail the
environment we used.

We used NVIDIA Management Library (NVML) to measure the power usage.
Regarding the energy efficiency measurement, we used the metric of performance
achieved divided by average power. Each experiment was executed 30 times, we
show average values, as well a 95% confidence interval calculated with Student’s
t-distribution.

5 Results

This section shows the optimizations techniques we used to improve the per-
formance and energy efficiency of a stencil application. The stencil we used
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Parameter Value

Device Tesla K20m
CUDA Cores 2496 (13 SMXs × 192 SPs/SMX)

Registers 13 × 256 KByte
Cache L1 13 × 64 KByte
Cache L2 shared, 1280 KByte
Texture (read-only) 13 × 48 KByte
Global Memory 5 GByte GDDR5

Table 1: Configuration of GPU system.

simulates the propagation of a single wavelet over time. To create the sim-
ulation, it solves the isotropic acoustic wave propagation with constant den-
sity under Dirichlet boundary conditions over a 3D domain. The stencil is a
13-arm with the following input sizes: (1024 × 256 × 256), (2048 × 256 × 256),
(4096 × 256 × 256), and (7168 × 256 × 256).

In the following subsections, we describe each optimization and analyze how
they address the performance and energy efficiency improvements. We also show
the results obtained by using the three different memories and the results of the
optimizations applied in each of them, on a NVIDIA Kepler architecture.

5.1 Performance and Energy Efficiency improvements over Naive
version

This subsection shows the improvements obtained by using two optimization
techniques over the naive version of the stencil computation. Figure 2 shows the
performance and energy efficiency of the naive version and the optimizations.
The first optimization technique used was the int.z which stores data from direc-
tion Z in local variables aiming to take advantage of the data locality by reusing
these data in the subsequent iterations. The performance and energy efficient
were improved by up to 4.65% and up to 4.55% using the int.z technique over
a naive version. This improvement occurs due to the reuse of L2 cache data
made by this optimization. The number of access in global memory is reduced
by increasing L2 cache hits.

We propose a second optimization called int.z.reg which consists of the int.z
optimization along with the use of the register file to store the Z points. In int.z
Z points were stored only in local variables. Using this optimization performance
overtakes the previous versions with an improvement of up to 34.31% compared
with the naive version. The energy efficiency was also improved by up to 34.30%.
The results show that the usage of registers, which are faster than local variables,
allow us to obtain more performance with a better energy efficency.
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Fig. 2: Improvements over Naive version which uses Global Memory.

5.2 Performance and Energy Efficiency improvements over Shared
Memory

In the previous subsection, we showed the optimizations applied in the naive
version. Although the performance and energy efficiency was improved by both
optimizations techniques, the naive version does not take advantage of fast GPU
memories as shared memory. Thus, we improved the naive version by using the
shared memory scratch pad to store a slice of data that is reused by the threads
of the same block. The data was manually allocated using the shared directive,
indicating a piece of data shared among all threads. We also applied the int.z
and int.z.reg optimizations aiming to improve the performance of the memory
operations.

The performance and energy efficiency results are showed in Figure 3. Using
this optimization, performance was improved by up to 2.25% and 54.46% in the
int.z and int.z.reg optimizations compared with the shared memory version. It
occurs due to the data stored in scratch pad is reused by the threads in the
following iterations. The energy efficiency was improved by up to 2.02% and
54.11% using these optimizations.

5.3 Performance and Energy Efficiency improvements over
Read-only Memory

In this subsection, we are showing the improvements obtained when we use both
optimizations and the read-only memory. Since the data we store in the shared
memory was not update we may take advantage of the read-only memory. The
read-only memory is faster than shared memory but exclusively used for read-
only operations. We can explicitly define that global memory reads be stored in
the read-only memory using the lgd() intrinsic.

The int.z optimization over the read.only version achieve a performance im-
provement of up to 34.30%. Implementing the int.z.reg that also uses the register
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Fig. 3: Improvements over Shared Memory.
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Fig. 4: Improvements over Read-only Memory.

file the performance was improved by up to 44.65%. The energy efficiency was
also improved by these optimizations. The int.z version improved the energy
efficiency by up to 34.20% while the int.z.reg improved the efficiency by up to
44.53%.

6 Conclusion

Several scientific applications make use of stencil computations to their model
simulations. Stencils have both implicit and explicit PDE being so also interest-
ing as an architectural evaluation benchmark. The computing present in these
applications are low intensity, once that they are typically memory-bound. In
this form, memory optimizations are important for to use the fastest memories
available in GPUs and increase their the energy efficiency.
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In this paper, aim to achieve energy savings, we introduce methods and opti-
mization to stencil application that exploit the different memory levels available.
Our developed methods, which are used in conjunction with specific GPU mem-
ory characteristics, allow to use the read-only cache and also the shared memory.
Also, our developed optimization allows to combine the Z-axis internalization of
stencil application with the reuse of registers of GPU architecture.

The main contribution of this paper is performance and energy efficiency
increases when applied GPU-algorithms and optimization over stencil applica-
tion. Our developed GPU-optimized algorithms for stencil applications achieve
performance improvement of up to 54.11% and 44.53% when were used shared
memory and read-only cache respectively over the naive version. This increase
in computational performance also improves the energy efficiency in an equiva-
lent value, once that our methods and optimization do not increase the power
demand.

Changes in the GPU architecture, as in the case of the introduction of the
read-only cache in the Kepler architecture, can generate changes in the results
presented in this work. In the future, we plan to investigate methods and opti-
mization to achieve gains in stencil applications over new NVIDIA architecture
and Intel Xeon Phi.
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