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Preface

The most common term for methods that employ stochastic schemes to produce
search strategies is metaheuristics. In general, there not exist strict classifications
of these methods. However, several kinds of algorithms have been coined
depending on several criteria such as the source of inspiration, cooperation among
the agents or type of operators.

From the metaheuristic methods, it is considered a special set of approaches
which are designed in terms of the interaction among the search agents of a
group. Members inside the group cooperate to solve a global objective by using
local accessible knowledge that is propagated through the set of members. With this
mechanism, complex problems can be solved more efficiently than considering the
strategy of single individual. In general terms, this group is referred to as a swarm,
where social agents interact with each other in a direct or indirect manner by using
local information from the environment. This cooperation among agents produces
an effective distributive strategy to solve problems. Swarm intelligence (SI)
represents a problem-solving methodology that results from the cooperation among
a set of agents with similar characteristics. During this cooperation, local behaviors
of simple elements produce the existence of complex collective patterns.

The study of biological entities such as animals and insects which manifest a
social behavior has produced several computational models of swarm intelligence.
Some examples include ants, bees, locust swarms, spiders and bird flocks. In the
swarm, each agent maintains a simple strategy. However, due to its social behavior,
the final collective strategy produced by all agents is usually very complex. The
complex operation of a swarm is a consequence of the cooperative behavior among
the agents generated during their interaction.

The complex operation of the swarm cannot be reduced to the aggregation of
behaviors of each agent in the group. The association of all simple agent behaviors
is so complex that usually is not easy to predict or deduce the global behavior of the
whole swarm. This concept is known as emergence. It refers to the process of
produce complex behavioral patterns from the iteration of simple and unsophisti-
cated strategies. Something remarkable is that these behavioral patterns appear
without the existence of a coordinated control system but emerge from the
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exchange of local information among agents. Therefore, there subsists a close
relationship between individual and collective behavior. In general, the collective
behavior of agents determines the behavior of the swarm. On the other hand, swarm
behavior is also strongly influenced by the conditions under which each agent
executes its operations.

The operations of each agent can modify its own behavior and the behavior of
other neighbor agents, which also alters the global swarm performance. Under such
conditions, the most significant element of swarm intelligence is the model of
interaction or cooperation among the agents. Cooperation in biological entities that
operate as swarm systems happens in different mechanisms from which social
interaction represents the most important. This social interaction can be conducted
through physical contact, visual information, audio messages, or chemical per-
ceptual inputs. Examples of cooperation models in nature are numerous, and some
examples include the dynamical task assignation performed in an ant colony,
without any central control or task coordination. The adoption of optimal spatial
patterns builds by the self-organization in bird flocks and fish in schools. The
hunting strategies developed by predators. The purpose of computational swarm
intelligence schemes is to model the simple behaviors of agents and its local
interactions with other neighboring agents to perform an effective search strategy
for solving optimization problems.

One example is the particle swarm optimization (PSO) which models two simple
actions. Each agent (1) moves toward the best agent of the swarm and (2) moves
toward the position where the agent has reached its best location. As a consequence,
the collective behavior of the swarm produces that all agents are attracted to the best
positions experimented by the swarm. Another example is the ant colony opti-
mization (ACO) which models the biological pheromone trail following behavior of
ants. Under this mechanism, each ant senses pheromone concentrations in its local
position. Then, it probabilistically selects the path with the highest pheromone
concentration. Considering this model, the collective effect in the swarm is to find
the best option (shortest path) from a group of alternatives available in a
decision-making problem.

There exist several features that clearly appear in most of the metaheuristic and
swarm approaches, such as the use of diversification to force the exploration of
regions of the search space, rarely visited until now, and the use of intensification or
exploitation, to investigate thoroughly some promising regions. Another interesting
feature is the use of memory to store the best solutions encountered. For these
reasons, metaheuristics and swarm methods quickly became popular amongst
researchers to solve from simple to complex optimization problems in different
areas.

Most of the problems in science, engineering, economics, and life can be
translated as an optimization or a search problem. According to their characteristics,
some problems can be simple that can be solved by traditional optimization
methods based on mathematical analysis. However, most of the problems of
practical importance such as system identification, parameter estimation, energy
systems, represent conflicting scenarios so that they are very hard to be solved by
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using traditional approaches. Under such circumstances, metaheuristic and swarm
algorithms have emerged as the best alternative to solve this kind of complex
formulations. Therefore, swarm techniques have consolidated as a very active
research subject in the last ten years. During this time, various new swarm
approaches have been introduced. They have been experimentally examined on a
set of artificial benchmark problems and in a large number of practical applications.
Although metaheuristic and swarm methods represent one of the most exploited
research paradigms in computational intelligence, there are a large number of open
challenges in the area of swarm intelligence. They range from premature conver-
gence, inability to maintain population diversity and the combination of swarm
paradigms with other algorithmic schemes, toward extending the available tech-
niques to tackle ever more difficult problems.

Numerous books have been published tacking in account any of the most widely
known swarm methods, namely ant colony algorithms and particle swarm opti-
mization but attempts to consider the discussion of new alternative approaches are
always scarce. Initial swarm schemes maintain in their design several limitations
such as premature convergence and inability to maintain population diversity.
Recent swarm methods have addressed these difficulties providing in general better
results. Many of these novel swarm approaches have also been lately introduced. In
general, they propose new models and innovative cooperation models for producing
an adequate exploration and exploitation of large search spaces considering a
significant number of dimensions. Most of the new metaheuristic swarm present
promising results. Nevertheless, they are still in their initial stage. To grow and
attain their complete potential, new swarm methods must be applied in a great
variety of problems and contexts, so that they do not only perform well in their
reported sets of optimization problems, but also in new complex formulations. The
only way to accomplish this is by making possible the transmission and presen-
tation of these methods in different technical areas as optimization tools. In general,
once a scientific, engineering, or practitioner recognizes a problem as a particular
instance of a more generic class, he/she can select one of the different swarm
algorithms that guarantee an expected optimization performance. Unfortunately, the
set of options are concentrated in algorithms whose popularity and high prolifer-
ation are better than the new developments.

The excessive publication of developments based on the simple modification of
popular swarm methods presents an important disadvantage: They avoid the
opportunity to discover new techniques and procedures which can be useful to
solve problems formulated by the academic and industrial communities. In the last
years, several promising swarm schemes that consider very interesting concepts and
operators have been introduced. However, they seem to have been completely
overlooked in the literature, in favor of the idea of modifying, hybridizing, or
restructuring popular swarm approaches.

The goal of this book is to present advances that discuss new alternative swarm
developments which have proved to be effective in their application to several
complex problems. The book considers different new metaheuristic methods and
their practical applications. This structure is important to us, because we recognize
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this methodology as the best way to assist researchers, lecturers, engineers, and
practitioners in the solution of their own optimization problems.

This book has been structured so that each chapter can be read independently
from the others. Chapter 1 describes the main characteristics and properties of
metaheuristic and swarm methods. This chapter analyses the most important con-
cepts of metaheuristic and swarm schemes.

Chapter 2 discusses the performance and main applications of each metaheuristic
and swarm method in the literature. The idea is to establish the strength and
weaknesses of each traditional scheme from practical perspective.

The first part of the book that involves Chaps. 3, 4, 5, and 6 present recent
swarm algorithms their operators and characteristics. In Chap. 3, an interesting
swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is presented
for solving global optimization problems. SHO is based on the simulation of the
widely observed selfish herd behavior manifested by individuals within a herd of
animals subjected to some form of predation risk. In SHO, individuals emulate the
predatory interactions between groups of prey and predators by two types of search
agents: the members of a selfish herd (the prey) and a pack of hungry predators.
Depending on their classification as either a prey or a predator, each individual is
conducted by a set of unique evolutionary operators inspired by such prey–predator
relationship. These unique traits allow SHO to improve the balance between
exploration and exploitation without altering the population size. The experimental
results show the remarkable performance of our proposed approach against those
of the other compared methods, and as such SHO is proven to be an excellent
alternative to solve global optimization problems.

Chapter 4 considers a recent swarm algorithm called the Social Spider
Optimization (SSO) for solving optimization tasks. The SSO algorithm is based on
the simulation of cooperative behavior of social spiders. In the proposed algorithm,
individuals emulate a group of spiders which interact with each other based on the
biological laws of the cooperative colony. The algorithm considers two different
search agents (spiders): males and females. Depending on gender, each individual is
conducted by a set of different evolutionary operators which mimic different
cooperative behaviors that are typically found in the colony. In order to illustrate the
proficiency and robustness of the proposed approach, it is compared to other
well-known evolutionary methods. The comparison examines several standard
benchmark functions that are commonly considered within the literature of evo-
lutionary algorithms. The outcome shows a high performance of the proposed
method for searching a global optimum with several benchmark functions.

In Chap. 5, a swarm algorithm called Locust Search (LS) is presented for solving
optimization tasks. The LS algorithm is based on the simulation of the behavior
presented in swarms of locusts. In the proposed algorithm, individuals emulate a
group of locusts which interact with each other based on the biological laws of the
cooperative swarm. The algorithm considers two different behaviors: solitary and
social. Depending on the behavior, each individual is conducted by a set of evo-
lutionary operators which mimic the different cooperative behaviors that are typi-
cally found in the swarm. In order to illustrate the proficiency and robustness of the
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proposed approach, it is compared to other well-known evolutionary methods. The
comparison examines several standard benchmark functions that are commonly
considered within the literature of evolutionary algorithms. The outcome shows a
high performance of the proposed method for searching a global optimum with
several benchmark functions.

Chapter 6 presents an algorithm for global optimization called the collective
animal behavior (CAB). Animal groups, such as schools of fish, flocks of birds,
swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including
swarming about a food source, milling around a central location, or migrating over
large distances in aligned groups. These collective behaviors are often advanta-
geous to groups, allowing them to increase their harvesting efficiency, to follow
better migration routes, to improve their aerodynamic, and to avoid predation. In the
presented swarm algorithm, the searcher agents emulate a group of animals which
interact with each other based on the biological laws of collective motion. The
method has been compared to other well-known optimization algorithms. The
results show good performance of the proposed method when searching for a global
optimum of several benchmark functions.

The second part of the book which involves Chaps. 7, 8, and 9 presents the use
of recent swarm algorithms in different domains. The idea is to show the potential
of new swarm alternatives algorithms from a practical perspective.

In Chap. 7, an algorithm for the optimal parameter calibration of fractional fuzzy
controllers (FCs) is presented. Fuzzy controllers (FCs) based on integer schemes
have demonstrated their performance in an extensive variety of applications.
However, several dynamic systems can be more accurately controlled by fractional
controllers. Under such conditions, there is currently an increasing interest in
generalizing the design of FCs with fractional operators. In the design stage of
fractional FCs, the parameter calibration process is transformed into a multidi-
mensional optimization problem where fractional orders as well as controller
parameters of the fuzzy system are considered as decision variables. To determine
the parameters, the proposed method uses the swarm method called Social Spider
Optimization (SSO) which is inspired by the emulation of the collaborative
behavior of social spiders. In SSO, solutions imitate a set of spiders which coop-
erate to each other based on the natural laws of the cooperative colony. Different to
the most of existent evolutionary algorithms, it explicitly avoids the concentration
of individuals in the best positions, avoiding critical flaws such as the premature
convergence to suboptimal solutions and the limited exploration–exploitation bal-
ance. Numerical simulations have been conducted on several plants to show the
effectiveness of the proposed scheme.

Chapter 8 presents an algorithm for the automatic selection of pixel classes for
image segmentation. The presented method combines a swarm method with the
definition of a new objective function that appropriately evaluates the segmentation
quality with respect to the number of classes. The employed swarm algorithm is the
Locust Search (LS) which is based on the behavior of swarms of locusts. Different
to the most of existent evolutionary algorithms, it explicitly avoids the concentra-
tion of individuals in the best positions, avoiding critical flaws such as the
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premature convergence to suboptimal solutions and the limited exploration–
exploitation balance. Experimental tests over several benchmark functions and
images validate the efficiency of the proposed technique with regard to accuracy
and robustness.

Chapter 9 presents an algorithm for the automatic detection of circular shapes
embedded into cluttered and noisy images without considering conventional Hough
transform techniques. The approach is based on a swarm technique known as the
collective animal behavior (CAB). In CAB, searcher agents emulate a group of
animals which interact with each other based on simple biological laws that are
modeled as swarm operators. The approach uses the encoding of three non-collinear
points embedded into an edge-only image as candidate circles. Guided by the
values of the objective function, the set of encoded candidate circles (charged
particles) are evolved using the CAB algorithm so that they can fit into actual
circular shapes over the edge-only map of the image. Experimental evidence from
several tests on synthetic and natural images which provide a varying range of
complexity validates the efficiency of our approach regarding accuracy, speed, and
robustness.

Finally, In Chap. 10, the swarm optimization algorithm of Locust Search (LS) is
applied to a template-matching scheme. In the approach, the LS method is con-
sidered as a search strategy in order to find the pattern that better matches in the
original image. According to a series of experiments, LS achieves the best results
between estimation accuracy and computational load.

As authors, we wish to thank many people who were somehow involved in the
writing process of this book. We express our gratitude to Prof. Lakhmi C. Jain, who
so warmly sustained this project. Acknowledgments also go to Dr. Thomas
Ditzinger and Varsha Prabakaran, who so kindly agreed to its appearance.

Guadalajara, Mexico Erik Cuevas
Fernando Fausto
Adrián González
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