Skip to main content

Towards Optimized and Constant-Time CSIDH on Embedded Devices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11421))

Abstract

We present an optimized, constant-time software library for commutative supersingular isogeny Diffie-Hellman key exchange (CSIDH) proposed by Castryck et al. which targets 64-bit ARM processors. The proposed library is implemented based on highly-optimized field arithmetic operations and computes the entire key exchange in constant-time. The proposed implementation is resistant to timing attacks. We adopt optimization techniques to evaluate the highest performance CSIDH on ARM-powered embedded devices such as cellphones, analyzing the possibility of using such a scheme in the quantum era. To the best of our knowledge, the proposed implementation is the first constant-time implementation of CSIDH and the first evaluation of this scheme on embedded devices. The benchmark result on a Google Pixel 2 smartphone equipped with 64-bit high-performance ARM Cortex-A72 core shows that it takes almost 12 s for each party to compute a commutative action operation in constant-time over the 511-bit finite field proposed by Castryck et al. However, using uniform but variable-time Montgomery ladder with security considerations improves these results significantly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    M and S stand for field multiplication and field squaring, respectively.

  2. 2.

    The optimal value for k is directly related to the prime and the trade-off between memory usage and performance.

  3. 3.

    Our library is publicly available at: https://github.com/amirjalali65/ARMv8-CSIDH.

References

  1. An Efficient Post-quantum Commutative Group Action. https://csidh.isogeny.org/software.html

  2. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies. https://quantum.isogeny.org/qisog-20181031.pdf

  3. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2_25

    Chapter  Google Scholar 

  4. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH and ordinary isogeny-based schemes. IACR Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/537

  5. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. IACR Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/383

  6. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Cryptol. 22(1), 93–113 (2009)

    Article  MathSciNet  Google Scholar 

  7. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

    Article  MathSciNet  Google Scholar 

  8. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_25

    Chapter  Google Scholar 

  9. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_11

    Chapter  Google Scholar 

  10. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  11. Couveignes, J.M.: Hard Homogeneous Spaces. IACR Cryptology ePrint Archive (2006). http://eprint.iacr.org/2006/291

  12. Feo, L.D.: Isogeny Graphs in Cryptology. http://defeo.lu/docet/assets/slides/2018-05-31-gdr-securite.pdf

  13. Feo, L.D.: Mathematics of isogeny based cryptography. CoRR abs/1711.04062 (2017). http://arxiv.org/abs/1711.04062

  14. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. IACR Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/824

  15. Feo, L.D., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary isogeny graphs. CoRR (2018). http://arxiv.org/abs/1809.07543

  16. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  17. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_3

    Chapter  Google Scholar 

  18. Jalali, A., Azarderakhsh, R., Mozaffari-Kermani, M.: Efficient post-quantum undeniable signature on 64-Bit ARM. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 281–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_14

    Chapter  Google Scholar 

  19. Jalali, A., Azarderakhsh, R., Kermani, M.M.: NEON SIKE: supersingular isogeny key encapsulation on ARMv7. In: Security, Privacy, and Applied Cryptography Engineering - 8th International Conference, SPACE, pp. 37–51 (2018)

    Google Scholar 

  20. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Supersingular isogeny Diffie-Hellman key exchange on 64-bit ARM. IEEE Trans. Depend. Secure Comput. (2017)

    Google Scholar 

  21. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST Post-Quantum Standardization project (2017). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

  22. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  MATH  Google Scholar 

  23. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Kermani, M.M.: NEON-SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM. In: Cryptology and Network Security - 15th International Conference, CANS, pp. 88–103 (2016)

    Google Scholar 

  24. Meyer, M., Reith, S.: A faster way to the CSIDH. IACR Cryptology ePrint Archive, p. 782 (2018). https://eprint.iacr.org/2018/782

  25. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_12

    Chapter  Google Scholar 

  26. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptology ePrint Archive (2006). http://eprint.iacr.org/2006/145

  27. Seo, H., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: faster modular multiplications for faster post-quantum supersingular isogeny key exchange. IACR Trans. Cryptogr. Hardw. Embed. Syst. 3, 1–20 (2018)

    Google Scholar 

  28. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09494-6

  29. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235 (2010). https://doi.org/10.3934/amc.2010.4.215

  30. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273, 305–347 (1971)

    Google Scholar 

Download references

Acknowledgment

This work is supported in parts by NSF CNS-1801341, NIST-60NANB17D184, NIST-60NANB16D246, and ARO W911NF-17-1-0311, as well as NSERC, CryptoWorks21, Public Works and Government Services Canada, Canada First Research Excellence Fund, and the Royal Bank of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Jalali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D. (2019). Towards Optimized and Constant-Time CSIDH on Embedded Devices. In: Polian, I., Stöttinger, M. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2019. Lecture Notes in Computer Science(), vol 11421. Springer, Cham. https://doi.org/10.1007/978-3-030-16350-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16350-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16349-5

  • Online ISBN: 978-3-030-16350-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics