Skip to main content

Differential Evolution Trained Fuzzy Cognitive Map: An Application to Modeling Efficiency in Banking

  • Conference paper
  • First Online:
  • 1073 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 941))

Abstract

In this work, we developed a Differential Evolution (DE) trained Fuzzy Cognitive Map (FCM) for predicting the bank efficiency. We developed two modes of training namely (i) sequential and (ii) batch modes. We compared the DE trained FCM models with the conventional Hebbian training in both modes. We employed Mean Absolute Percentage Error (MAPE) as an error measure while predicting the efficiency from Return on Assets (ROA), Return on Equity (ROE), Profit Margin (PM), Utilization of Assets (UA), and Expenses Ratio (ER). We employed 5x2-fold cross-validation framework. In the first case i.e. sequential mode of training, the DE trained FCM statistically outperformed the Hebbian trained FCM and in the second case i.e. batch mode of training, DE trained FCM is statistically the same as the Hebbian trained FCM. To break the tie in the batch mode, the training time is compared where DE trained FCM turned to be 19% faster than the Hebbian trained FCM. The proposed model can be applied to solving similar banking and insurance problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boutalis, Y., Kottas, T., Christodoulou, M.: Adaptive estimation of fuzzy cognitive maps with proven stability and parameter convergence. IEEE Trans. Fuzzy Syst. 17(4), 874–889 (2009)

    Article  Google Scholar 

  2. Boutalis, Y., Kottas, T., Christodoulou, M.: On the existence and uniqueness of solutions for the concept values in fuzzy cognitive maps. In: 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 98–104. IEEE (2008)

    Google Scholar 

  3. Bueno, S., Salmeron, J.L.: Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst. Appl. 36(3), 5221–5229 (2009)

    Article  Google Scholar 

  4. Dickerson, J.A., Kosko, B.: Virtual worlds as fuzzy cognitive maps. Presence: Teleoperators Virtual Environ. 3(2), 173–189 (1994)

    Article  Google Scholar 

  5. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996)

    Article  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co., Boston (1989)

    MATH  Google Scholar 

  7. Jayashree, L.S., Palakkal, N., Papageorgiou, E.I., Papageorgiou, K.: Application of fuzzy cognitive maps in precision agriculture: a case study on coconut yield management of southern India’s Malabar region. Neural Comput. Appl. 26(8), 1963–1978 (2015)

    Article  Google Scholar 

  8. Jayashree, L., Lakshmi Devi, R., Papandrianos, N., Papageorgiou, E.I.: Application of fuzzy cognitive map for geospatial dengue outbreak risk prediction of tropical regions of Southern India. Intell. Decis. Technol. 12(2), 231–250 (2018)

    Article  Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks (ICNN 1995), Piscataway, NJ, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  10. Krishna, G.J., Ravi, V.: Evolutionary computing applied to customer relationship management: a survey. Eng. Appl. Artif. Intell. 56, 30–59 (2016)

    Article  Google Scholar 

  11. Krishna, G.J., Ravi, V.: Evolutionary computing applied to solve some operational issues in banks. In: Datta, S., Davim, J. (eds.) Optimization in Industry. Management and Industrial Engineering, pp. 31–53. Springer, Cham (2019)

    Google Scholar 

  12. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)

    Article  Google Scholar 

  13. Papageorgiou, E., Markinos, A., Gemtos, T.: Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Appl. Soft Comput. 11(4), 3643–3657 (2011)

    Article  Google Scholar 

  14. Papageorgiou, E.I.: Learning algorithms for fuzzy cognitive maps: a review study. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(2), 150–163 (2012)

    Article  Google Scholar 

  15. Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive maps research during the last decade. IEEE Trans. Fuzzy Syst. 21(1), 66–79 (2013)

    Article  Google Scholar 

  16. Parsopoulos, K.E., Papageorgiou, E.I., Groumpos, P.P., Vrahatis, M.N.: Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. In: Deb, K. (ed.) Genetic and Evolutionary Computation Conference, pp. 402–413. Springer, Heidelberg (2004)

    Google Scholar 

  17. Pramodh, C., Ravi, V., Nagabhushanam, T.: Indian banks’ productivity ranking via data envelopment analysis and fuzzy multi-attribute decision-making hybrid. Int. J. Inf. Decis. Sci. 1(1), 44 (2008)

    Google Scholar 

  18. Robins, A.: Sequential learning in neural networks: a review and a discussion of pseudorehearsal based methods. Intell. Data Anal. 8(3), 301–322 (1997)

    Article  Google Scholar 

  19. Stach, W., Kurgan, L., Pedrycz, W.: Data-driven nonlinear Hebbian learning method for fuzzy cognitive maps. In: IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong Kong, China, pp. 1975–1981. IEEE, June 2008

    Google Scholar 

  20. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153(3), 371–401 (2005)

    Article  MathSciNet  Google Scholar 

  21. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  22. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)

    Google Scholar 

  23. Dasgupta, S., Das, S., Biswas, A., Abraham, A.: On stability and convergence of the population-dynamics in differential evolution. AI Commun. 22(1), 1–20 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Ali, M., Pant, M., Abraham, A.: Simplex differential evolution. Acta Polytechnica Hungarica 6(5), 95–115 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadlamani Ravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaya Krishna, G., Smruthi, M., Ravi, V., Shandilya, B. (2020). Differential Evolution Trained Fuzzy Cognitive Map: An Application to Modeling Efficiency in Banking. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_1

Download citation

Publish with us

Policies and ethics