Skip to main content

Fault Detection and Classification for Induction Motors Using Genetic Programming

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11451))

Included in the following conference series:

Abstract

Induction motors are the workhorse in various industry sectors, and their accurate fault detection is essential to ensure reliable operation of critical industrial processes. Since various types of mechanical and electrical faults could occur, induction motor fault diagnosis can be interpreted as a multi-label classification problem. The current and vibration input data collected by monitoring a motor often require signal processing to extract features that can better characterize these waveforms. However, some extracted features may not be relevant to the classification, feature selection is thus necessary. Given such challenges, in recent years, machine learning methods, including decision trees and support vector machines, are increasingly applied to detect and classify induction motor faults. Genetic programming (GP), as a powerful automatic learning algorithm with its abilities of embedded feature selection and multi-label classification, has not been explored to solve this problem. In this paper, we propose a linear GP (LGP) algorithm to search predictive models for motor fault detection and classification. Our method is able to evolve multi-label classifiers with high accuracies using experimentally collected data in the lab by monitoring two induction motors. We also compare the results of the LGP algorithm to other commonly used machine learning algorithms, and are able to show its superior performance on both feature selection and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, S., Chow, T.W.: Induction machine fault detection using som-based RBF neural networks. IEEE Trans. Ind. Electron. 51(1), 183–194 (2004)

    Article  Google Scholar 

  2. Razavi-Far, R., Farajzadeh-Zanjani, M., Saif, M.: An integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motors. IEEE Trans. Ind. Inform. 13(6), 2758–2769 (2017)

    Article  Google Scholar 

  3. Martin-Diaz, I., Morinigo-Sotelo, D., Duque-Perez, O., Romero-Troncoso, R.J.: An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions. IEEE Trans. Ind. Appl. 54(3), 2215–2224 (2018)

    Article  Google Scholar 

  4. Godoy, W.F., da Silva, I.N., Goedtel, A., Palácios, R.H.C., Lopes, T.D.: Application of intelligent tools to detect and classify broken rotor bars in three-phase induction motors fed by an inverter. IET Electr. Power Appl. 10(5), 430–439 (2016)

    Article  Google Scholar 

  5. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008). http://lulu.com

  6. Pappa, G.L., Ochoa, G., Hyde, M.R., Freitas, A.A., Woodward, J., Swan, J.: Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genet. Program. Evol. Mach. 15(1), 3–35 (2014)

    Article  Google Scholar 

  7. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26 (2001)

    Article  Google Scholar 

  8. Agapitos, A., O’Neill, M., Brabazon, A.: Adaptive distance metrics for nearest neighbour classification based on genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_1

    Chapter  Google Scholar 

  9. Guven, A.: Linear genetic programming for time-series modelling of daily flow rate. J. Earth Syst. Sci. 118(2), 137–146 (2009)

    Article  Google Scholar 

  10. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

    Article  Google Scholar 

  11. Parkins, A.D., Nandi, A.K.: Genetic programming techniques for hand written digit recognition. Sig. Process. 84(12), 2345–2365 (2004)

    Article  Google Scholar 

  12. Link, J., et al.: Application of genetic programming to high energy physics event selection. Nucl. Instr. Meth. Phys. Res. Sect. A: Accelerators Spectrometers Detectors Assoc. Equip. 551(2–3), 504–527 (2005)

    Article  Google Scholar 

  13. Chen, S.H., Yeh, C.H.: Evolving traders and the business school with genetic programming: a new architecture of the agent-based artificial stock market. J. Econ. Dyn. Control 25(3–4), 363–393 (2001)

    Article  Google Scholar 

  14. Liu, K.H., Xu, C.G.: A genetic programming-based approach to the classification of multiclass microarray datasets. Bioinformatics 25(3), 331–337 (2009). https://doi.org/10.1093/bioinformatics/btn644

    Article  Google Scholar 

  15. Hu, T., et al.: An evolutioanry learning and network approach to identifying key metabolites for osteoarthritis. PLoS Comput. Biol. 14(3), e1005986 (2018)

    Article  Google Scholar 

  16. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  17. Guo, H., Jack, L.B., Nandi, A.K.: Feature generation using genetic programming with application to fault classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(1), 89–99 (2005)

    Article  Google Scholar 

  18. Witczak, M., Obuchowicz, A., Korbicz, J.: Genetic programming based approaches to identification and fault diagnosis of non-linear dynamic systems. Int. J. Control 75(13), 1012–1031 (2002). https://doi.org/10.1080/00207170210156224

    Article  MathSciNet  MATH  Google Scholar 

  19. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-0-387-31030-5

    Book  MATH  Google Scholar 

  20. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA (1992)

    MATH  Google Scholar 

  21. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  22. Breiman, L.: Classification and Regression Trees. Routledge, Abingdon (2017)

    Book  Google Scholar 

  23. Liaw, A., Wiener, M., et al.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)

    Google Scholar 

  24. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46. IBM, New York (2001)

    Google Scholar 

  25. Ali, M.Z., Shabbir, M.N.S.K., Liang, X., Zhang, Y., Hu, T.: Experimental investigation of machine learning based fault diagnosis for induction motors. In: Proceedings of 2018 IEEE Industry Applications Society (IAS) Annual Meeting, pp. 1–14. IEEE (2018)

    Google Scholar 

  26. Ali, M.Z., Shabbir, M.N.S.K., Liang, X., Zhang, Y., Hu, T.: Machine learning based fault diagnosis for single- and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Trans. Ind. Appl. (2019, in press)

    Google Scholar 

  27. Li, J., Li, M., Yao, X., Wang, H.: An adaptive randomized orthogonal matching pursuit algorithm with sliding window for rolling bearing fault diagnosis. IEEE Access 6, 41107–41117 (2018)

    Article  Google Scholar 

  28. Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. Technical report, Courant Institute of Mathematical Sciences, New York, United States (1993)

    Google Scholar 

  29. Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45(1), 12–19 (1994)

    Article  Google Scholar 

  30. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)

    Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Hu, T., Oksanen, K., Zhang, W., Randell, E., Furey, A., Zhai, G.: Analyzing feature importance for metabolomics using genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 68–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_5

    Chapter  Google Scholar 

  33. Wilcoxon, F.: Individual comparisons by ranking methods. Biometr. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  34. Wilcoxon, F., Katti, S., Wilcox, R.A.: Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel. Tables Math. Stat. 1, 171–259 (1970)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by Newfoundland and Labrador Research and Development Corporation (RDC) Ignite Grant 5404.1942.101 and the Natural Science and Engineering Research Council (NSERC) of Canada Discovery Grant RGPIN-2016-04699 to TH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Hu, T., Liang, X., Ali, M.Z., Shabbir, M.N.S.K. (2019). Fault Detection and Classification for Induction Motors Using Genetic Programming. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2019. Lecture Notes in Computer Science(), vol 11451. Springer, Cham. https://doi.org/10.1007/978-3-030-16670-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16670-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16669-4

  • Online ISBN: 978-3-030-16670-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics